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Abstract

In this paper we present a procedure allowing the extension of a CERES-based
cut-elimination method to intuitionistic logic. Previous results concerning this
problem manage to capture fragments of intuitionistic logic, but in many essen-
tial cases structural constraints were violated during normal form construction
resulting in a classical proof. The heart of the CERES method is the resolution
calculus, which ignores the structural constraints of the well known intuitionistic
sequent calculi. We propose, as a method of avoiding the structural violations,
the generalization of resolution from the resolving of clauses to the resolving
of cut-free proofs, in other words, what we call proof resolution. The result of
proof resolution is a cut-free proof rather than a clause. Note that, resolution on
ground clauses is essentially atomic cut, thus using proof resolution to construct
cut-free proofs one would need to join the two proofs together and remove the
atoms which where resolved. To efficiently perform this joining (and guaran-
tee that the resulting cut-free proof is intuitionistic) we develop the concept
of proof subsumption (similar to clause subsumption) and indexed resolution, a
refinement indexing atoms by their corresponding positions in the cut formula.
Proof subsumption serves as a tool to prove the completeness of the new method
CERES-i, and indexed resolution provides an efficient strategy for the joining of
two proofs which is in general a non-deterministic search. Such a refinement is
essential for any attempt to implement this method. Finally we compare the
complexity of CERES-i with that of Gentzen-based methods.

1. Introduction

Cut-elimination was originally introduced by Gerhard Gentzen as a theoreti-
cal tool from which results like decidability and consistency could be proven [10].
Cut-free proofs are computationally explicit objects from which interesting infor-
mation such as Herbrand disjunctions and interpolants can easily be extracted.
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When viewing formal proofs as a model for mathematical proofs, cut-elimination
corresponds to the removal of lemmas, which leads to interesting applications
(see, e.g. [2, 3]).

For such applications to mathematical proofs, the cut-elimination method
CERES (cut-elimination by resolution) was developed in [5]; initially, the method
was developed for classical first-order logic. It essentially reduces cut-elimination
for a proof ϕ of a sequent S to a theorem proving problem: the refutation of a
clause set corresponding to ϕ, denoted by CL(ϕ). Given a resolution refutation
of CL(ϕ), an essentially cut-free proof (a proof with only atomic cuts) can be
constructed by a proof-theoretic transformation. This proof theoretic transfor-
mation uses so-called proof projections ϕ[C] for C ∈ CL(ϕ), which are simple
cut-free proofs extracted from ϕ (proving the end-sequent S extended by the
atomic sequent C).

Due to the reduction to a theorem proving problem encoding crucial struc-
tural properties of cut, CERES turned out to be a powerful tool in proof analy-
sis [3]. Moreover, its asymptotic complexity is superior to that of two reductive
Gentzen-style methods [7]. The original method CERES was designed for clas-
sical first-order logic. Extensions to higher-order logic and first-order proof
schemata were defined in [12] and [9], respectively. As intuitionistic proofs,
like classical ones, are natural formalisms for mathematical reasoning, they are
of major importance to proof mining (see e.g. [13]). Therefore, it is a natu-
ral question whether the method CERES can be extended to intuitionistic logic.
However, the naive extension of CERES to first-order intuitionistic logic does not
work, as the results of the CERES-transformations are classical proofs in general.
In [16], it was shown that, for some intuitionistic proofs, there are refutations
of the clause set which cannot be transformed into intuitionistic proofs: neither
are the CERES-normal forms intuitionistic nor can they be transformed into in-
tuitionistic proofs by reasonable proof transformations. Only for proofs ϕ of
sequents of the form Γ `, the CERES-method can be maintained, provided neg-
ative resolution refutations are applied to CL(ϕ) [16]. This suggests that, in
order to cover all intuitionistic proofs, a radical change of the CERES-method is
required.

In this paper, we develop a complete CERES-like method for intuitionistic
proofs ϕ with skolemized end-sequents, called CERES-i. In Section 3.1, we show
that a separation of projections and resolution refutations (which is character-
istic to first-order CERES) does not work for intuitionistic logic; in fact there are
proofs ϕ of a sequent S and resolution refutations of CL(ϕ) which cannot be
combined with the projections to construct an intuitionistic cut-free proof of S.
Our solution of this problem consists in generalizing the resolution calculus from
clauses to cut-free proofs: instead of resolving clauses C,D ∈ CL(ϕ), we resolve
their projections ϕ[C] and ϕ[D], resulting in a new cut-free proof. We intro-
duce this general resolution principle of proofs in Section 6. The completeness
of proof resolution in intuitionistic logic (the derivation yields a cut-free intu-
itionistic proof) is based on a subsumption principle for proofs which is defined
in Section 5. These results yield a method, called CERES-i (defined in Section 8),
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Figure 1: Overview of the results.

for cut-elimination in intuitionistic logic: given an intuitionistic proof ϕ of a se-
quent S, we first compute the set of projections P(ϕ) of ϕ; then we apply proof
resolution to P(ϕ) and derive a cut-free intuitionistic proof ψ of S.

The results are better summarized in the diagram of Figure 1, where ϕ rep-
resents an LJ proof with cuts, ϕt contains only atomic cuts on axioms (obtained
from ϕ via reductive cut-elimination), and P(ψ) denotes the set of projections of
a proof ψ. The rightmost branch represents the CERES-i method proposed, and
the leftmost branch is a specific reductive cut-elimination strategy. The middle
branch serves as a bridge to show the completeness of CERES-i, i.e., that the final
cut-free proof obtained is intuitionistic. This is done via the proof subsumption
property, which is indicated in the diagram by the horizontal edges.

In Section 8, we also define a complete refinement of CERES-i which reduces
proof search. In Section 10, we compare CERES-i with a refinement of the re-
ductive cut-elimination method shown on the leftmost branch of Figure 1 and
show that CERES-i asymptotically outperforms the reductive method.

In summary, we define a novel method for cut-elimination in intuitionistic
logic which unifies methods from proof theory and the resolution calculus. We
demonstrate that principles like resolution and subsumption, which are powerful
tools in automated deduction, can be generalized to cut-free proofs. We think
that this methodology might be fruitful in investigating the complexity of cut-
elimination and in comparing different cut-elimination methods. Of course, all
the results in this paper also hold for classical logic. Generally, the methods of
subsumption and proof resolution may provide useful tools for proof analysis in
a more general context.
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2. Preliminaries

We assume that the reader is familiar with the syntax of first-order logic,
sequent calculus and resolution.

A sequent is a structure Γ ` ∆, where Γ and ∆ are multisets of formulas.
We will use the multiplicative versions of the calculi LK (Figure 2) and LJ
(Figure 3). Note that the LK rule for ∨-left is not the usual one, but it will be
necessary for the transformation we define later on.

Given a proof ϕ, we use the following notations:

• es(ϕ) denotes the end-sequent of ϕ.

• ϕ.ν is the subproof of ϕ rooted at node ν.

• ϕ[χ]ν is the replacement of the subproof at ϕ.ν by the proof χ.

We define the ancestors of a formula F in a proof ϕ inductively as follows:

− Let F ∈ es(ϕ.ν) then F is an ancestor of F .

− If ϕ.µ is a subproof of ϕ.ν, ρ is the last inference of ϕ.µ, and F ′ ∈ es(ϕ.µ)
is an ancestor of F , then one of the following cases must hold:

• If ρ is an axiom then we are done

• If ρ is a unary inference with F ′ as the main formula, then the aux-
iliary formula of ρ is an ancestor of F .

• If ρ is a unary inference where F ′ is not the main formula, then the
ancestor set remains the same.

• If ρ is a binary inference with F ′ as the main formula, then the
auxiliary formulas of ρ are ancestors of F .

• If ρ is a binary inference where F ′ is not the main formula, then the
ancestor set remains the same.

In some situations, we will need to reason about the free variables occurring
in a formula, set of formulas, or proof. We denote this set of variables by V (e),
where e might be any of the elements previously mentioned.

In a sequent, universal quantifiers of negative polarity and existential quanti-
fiers of positive polarity are called weak, universal quantifiers of positive polarity
and existential quantifiers of negative polarity are called strong. A sequent S
is called skolemized if only weak quantifiers occur in S. A proof of S is called
skolemized if S is skolemized [4]. Skolemization for the calculus LJ can be
accomplished using epsilon terms [17]. We postpone the discussion on how ep-
silonization can be used for CERES-i to Section 8.1, after the method is defined.

The inferences ∀l and ∃r are called weak, ∀r, ∃l are called strong. Note that
a cut-free proof of a skolemized sequent does not contain strong quantifiers;
skolemized proofs with cuts may contain strong quantifier inferences but their
principal formulas are ancestors of cut formulas.
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A ` A init
Γ1 ` ∆1, P Γ2, P ` ∆2

Γ1,Γ2 ` ∆1,∆2
cut

Γ ` ∆, P

Γ,¬P ` ∆
¬ : l

Γ, P ` ∆

Γ ` ∆,¬P
¬ : r

Pi,Γ ` ∆

P1 ∧ P2,Γ ` ∆
∧ : li

Γ1 ` ∆1, P Γ2 ` ∆2, Q

Γ1,Γ2 ` ∆1,∆2, P ∧Q
∧ : r

P,Γ1 ` ∆,∆1 Q,Γ2 ` ∆,∆2

P ∨Q,Γ1,Γ2 ` ∆,∆1,∆2
∨ : l

Γ ` ∆, Pi

Γ ` ∆, P1 ∨ P2
∨ : ri

Γ1 ` ∆1, P Q,Γ2 ` ∆2

P → Q,Γ1,Γ2 ` ∆1,∆2
→: l

Γ, P ` ∆, Q

Γ ` ∆, P → Q
→: r

P{x← α},Γ ` ∆

∃x.P,Γ ` ∆
∃ : l

Γ ` ∆, P{x← t}
Γ ` ∆, ∃x.P ∃ : r

P{x← t},Γ ` ∆

∀x.P,Γ ` ∆
∀ : l

Γ ` ∆, P{x← α}
Γ ` ∆, ∀x.P ∀ : r

P, P,Γ ` ∆

P,Γ ` ∆
c : l

Γ ` ∆, P, P

Γ ` ∆, P
c : r

Γ ` ∆
P,Γ ` ∆

w : l
Γ ` ∆

Γ ` ∆, P
w : r

Figure 2: LK: Sequent calculus for classical logic. It is assumed that α is a variable not
contained in P , Γ or ∆, t does not contain variables bound in P and i ∈ {1, 2}, A is an atomic
formula.

A ` A init
Γ1 ` P Γ2, P ` C

Γ1,Γ2 ` C
cut

Γ ` P
Γ,¬P ` ¬ : l

Γ, P `
Γ ` ¬P

¬ : r

Pi,Γ ` C
P1 ∧ P2,Γ ` C

∧ : li
Γ1 ` P Γ2 ` Q
Γ1,Γ2 ` P ∧Q

∧ : r

P,Γ1 ` C Q,Γ2 ` C
P ∨Q,Γ1,Γ2 ` C ∨ : l

Γ ` Pi

Γ ` P1 ∨ P2
∨ : ri

Γ1 ` P Q,Γ2 ` C
P → Q,Γ1,Γ2 ` C →: l

Γ, P ` Q
Γ ` P → Q

→: r

P{x← α},Γ ` C
∃x.P,Γ ` C ∃ : l

Γ ` P{x← t}
Γ ` ∃x.P ∃ : r

P{x← t},Γ ` C
∀x.P,Γ ` C ∀ : l

Γ ` P{x← α}
Γ ` ∀x.P ∀ : r

P, P,Γ ` C
P,Γ ` C c : l

Γ ` C
P,Γ ` C w : l

Γ `
Γ ` P

w : r

Figure 3: LJ: Sequent calculus for intuitionistic logic. It is assumed that α is a variable not
contained in P , Γ or C and t does not contain variables bound in P , A is an atomic formula.
Also, C stands for one formula or the empty multiset.
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3. Cut-elimination by resolution

Since our method is based on the original CERES, we will briefly present it
here. The method CERES can be sketched as follows. Let ϕ be a (skolemized)
proof with cuts of a closed sequent S. We start by collecting the atoms that
occur in the axioms and are ancestors of cut-formulas. These atoms are or-
ganized in clauses, which form the characteristic clause set. This organization
depends on the side in which they occur in the axiom and from which branch
they come from on binary rules. Thus, each clause in this set will be composed
of a number of atoms which came from cut-formulas and occur in some axiom
of ϕ. The next step consists of constructing the so-called projections, one for
each of the clauses in the characteristic clause set. A projection for a clause
C will be constructed using the inferences of ϕ. We start from the axioms
containing occurrences of the atoms of C and continue until we reach the end
sequent S, skipping cuts and inferences on cut ancestors. Since not all axioms
are available, the weakening of some formulas might be necessary in the pro-
jection construction. Thus, projections are cut-free derivations of S plus the
atoms from C. Concerning the characteristic clause set, a resolution refutation
of it ought to be found (it has been shown that this set is always refutable).
The refutation results in a derivation of the empty clause (also represented by
the empty sequent `) which will be used as the skeleton for the new proof. The
new proof will have only atomic cuts, which correspond to the applications of
the resolution rule in the refutation. It is assembled using the context product
of S and the grounded resolution refutation. This product is a derivation of S
from sequents composed of S and atoms from C. Then the projections are used
as proofs of this derivation’s open premises.

We will now formally define all these elements and operations, most of which
will be used throughout the paper. At the same time, we will apply the method
to the following LK proof, where the cut-ancestors are bold:

Pα ` Pα
¬Pα,Pα `

¬l

¬Pα ` ¬Pα
¬r

Qα ` Qα

¬Pα ∨Qα ` ¬Pα,Qα
∨l

¬Pα ∨Qα ` ¬Pα ∨Qα,¬Pα ∨Qα
∨r × 2

¬Pα ∨Qα ` ¬Pα ∨Qα
cr

∀x.(¬Px ∨Qx) ` ¬Pα ∨Qα
∀l

∀x.(¬Px ∨Qx) ` ∃y.(¬Pα ∨Qy)
∃r

∀x.(¬Px ∨Qx) ` ∀x.∃y.(¬Px ∨Qy)
∀r

Pa ` Pa
¬Pa, Pa `

¬l

¬Pa ` ¬Pa
¬r

Qβ ` Qβ
¬Pa ∨Qβ ` ¬Pa,Qβ

∨l

¬Pa ∨Qβ ` ¬Pa ∨Qβ,¬Pa ∨Qβ
∨r × 2

¬Pa ∨Qβ ` ¬Pa ∨Qβ
cr

¬Pa ∨Qβ ` ∃x.∃y.(¬Px ∨Qy)
∃r × 2

∃y.(¬Pa ∨Qy) ` ∃x.∃y.(¬Px ∨Qy)
∃l

∀x.∃y.(¬Px ∨Qy) ` ∃x.∃y.(¬Px ∨Qy)
∀l

∀x.(¬Px ∨Qx) ` ∃x.∃y.(¬Px ∨Qy)
cut

Definition 3.1 (Characteristic clause set). Let ϕ be a skolemized proof.
The characteristic clause set is built recursively from the leaves of the proof
until the end sequent. Let ν be an occurrence of a sequent in this proof. Then:
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• If ν is an axiom, then CL(ν) contains the sub-sequent of ν composed only
of cut-ancestors.

• If ν is the result of the application of a unary rule on a sequent µ, then
CL(ν) = CL(µ)

• If ν is the result of the application of a binary rule on sequents µ1 and µ2,
then we distinguish two cases:

– If the rule is applied to ancestors of any cut-formula, then CL(ν) =
CL(µ1) ∪ CL(µ2)

– If the rule is applied to ancestors of the end-sequent, then CL(ν) =
CL(µ1)× CL(µ2)

Where1: CL(µ1)× CL(µ2) = {C ◦D | C ∈ CL(µ1), D ∈ CL(µ2)}.
If ν0 is the root node, CL(ν0) is called the characteristic clause set of ϕ, also

denoted by CL(ϕ).

The characteristic clause set of our example proof is:

({Pα `} × {` Qα}) ∪ ({` Pa} ∪ {Qβ `})

Which reduces to:

CL(ϕ) = {Pα ` Qα ; ` Pa ; Qβ `}

Definition 3.2 (Projection). Let ϕ be a proof and ν a node which is a conclu-
sion of an inference ξ. We define P(ϕ.ν) as the set of projections {ϕ.ν[C] | C ∈
CL(ϕ.ν)}. Each projection ϕ.ν[C] is a cut-free proof of the sequent S(ν) ◦ C2

inductively defined as follows:

• If ξ is an axiom, then P(ϕ.ν) = {ϕ}.

• If ξ is a unary rule with premise µ:

– If ξ operates on a cut-ancestor, then P(ϕ.ν) = P(ϕ.µ).

– If ξ operates on an end-sequent ancestor, then P(ϕ.ν) is the set of:

ϕ.µ[Ci]

ζ
ξ

such that ϕ.µ[Ci] ∈ P(ϕ.µ).

• If ξ is a binary rule with premises µ1 and µ2:

– If ξ operates on a cut-ancestor, then P(ϕ.ν) = P(ϕ.µ1) ∪ P(ϕ.µ2).

1(Γ ` ∆) ◦ (Γ′ ` ∆′) = Γ,Γ′ ` ∆,∆′.
2S(ν) is the sequent occurring at node ν

7



– If ξ operates on an end-sequent ancestor, then P(ϕ.ν) is the set of:

ϕ.µ1[C1
i ] ϕ.µ2[C2

j ]

ζ
ξ

such that ϕ.µ1[C1
i ] ∈ P(ϕ.µ1) and ϕ.µ2[C2

j ] ∈ P(ϕ.µ2).

• For any C ∈ CL(ϕ) we define ϕ[C] = ϕ.ν0[C] where ν0 is the root node of
ϕ.

In each step, it might be necessary to weaken the auxiliary formulas of an
inference. Moreover, if not all formulas of the end-sequent are present after
constructing the projection, they may be weakened as well.

Note that no rule operates on cut ancestors, therefore they occur as atoms
in the end-sequent of the projections.

For a proof ϕ we define the set of projections: P(ϕ) = {ϕ[C] | C ∈ CL(ϕ)}.
For constructing a projection of a proof ϕ of an end-sequent S and a C ∈

CL(ϕ) it is in general not necessary to construct a proof of C ◦ S. Instead we
may construct a proof of C ◦S′ where S′ is a subsequent of S by minimizing the
weakenings on ancestors of the end-sequent. When we have such a projection
ϕ[C] and further omission of weakenings to reduce the size of S′ are impossible
we speak about a minimal projection. Both full projections (proofs ϕ[C] of C◦S)
and minimal projections (proofs ϕ[C] of C ◦ S′) will be called projections.

When defining the projections, note that binary rules operating on cut-
ancestors will not combine the derivations but only take their union. This will
result in some projections coming from the left branch and others coming from
the right branch of these rules. If ϕ1 and ϕ2 are two subproofs corresponding
to different branches, we say that a projection either goes over ϕ1 or ϕ2.

These are the (full) projections for the clauses obtained before:

ϕ[` Pa]

Pa ` Pa
` Pa,¬Pa

¬r

` Pa,¬Pa,Qβ
wr

` Pa,¬Pa ∨Qβ,¬Pa ∨Qβ
∨r × 2

` Pa,¬Pa ∨Qβ
cr

` Pa, ∃x.∃y.(¬Px ∨Qy)
∃r × 2

∀x.(¬Px ∨Qx) ` Pa, ∃x.∃y.(¬Px ∨Qy)
wl

ϕ[Qβ `]

Qβ ` Qβ
Qβ ` Qβ,¬Pa

wr

Qβ ` ¬Pa ∨Qβ,¬Pa ∨Qβ
∨r × 2

Qβ ` ¬Pa ∨Qβ
cr

Qβ ` ∃x.∃y.(¬Px ∨Qy)
∃r × 2

∀x.(¬Px ∨Qx),Qβ ` ∃x.∃y.(¬Px ∨Qy)
wl

ϕ[Pα ` Qα]
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Pα ` Pα
¬Pα,Pα `

¬l
Qα ` Qα

¬Pα ∨Qα,Pα ` Qα
∨l

∀x.(¬Px ∨Qx),Pα ` Qα
∀l

∀x.(¬Px ∨Qx),Pα ` Qα, ∃x.∃y.(¬Px ∨Qy)
wr

The minimal projections can be obtained by omitting the last weakenings of
the projections shown above.

Definition 3.3 (Resolution calculus). The resolution calculus is composed
of the following inference rules:

Γ ` ∆, A Γ′, A′ ` ∆′

Γσ,Γ′σ ` ∆σ,∆′σ
R

Γ, A,A′ ` ∆

Γσ,Aσ ` ∆σ
Cl

Γ ` ∆, A,A′

Γσ ` ∆σ,Aσ
Cr

Where σ is the most general unifier (m.g.u.) of A and A′.

Here we show a resolution refutation and its grounded version for the clause
set of our example:

` Pa Pα ` Qα
` Qa

R{α← a}
Qβ `

`
R{β ← a}

` Pa Pa ` Qa
` Qa R

Qa `
` R

Notice how the resolution rule looks like an atomic cut, except for the unifier.
If the resolution is ground, then it is exactly an atomic cut.

Definition 3.4 (Context product). Let C be a sequent and ϕ an LK deriva-
tion with end-sequent S such that no free variable in C occurs as an eigenvariable
in ϕ. We define the context product C ? ϕ (which gives a derivation of C ◦ S)
inductively:

• If ϕ consists only of an axiom, then C ? ϕ is the sequent: C ◦ S.

• If ϕ ends with a unary rule ξ:
ϕ′

S′

S
ξ

then we assume that C ? ϕ′ is already defined and thus C ? ϕ is:

C ? ϕ′

C ◦ S′
C ◦ S ξ

Since C does not contain free variables which are eigenvariables of ϕ, the
context product is well-defined even in the cases of ξ ∈ {∀r,∃l}, although
this case does not occur in our setting.
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• If ϕ ends with a binary rule ξ:

ϕ1

S1

ϕ2

S2

S
ξ

then assume that C ?ϕ1 and C ?ϕ2 are already defined. We define C ?ϕ:

C ? ϕ1

C ◦ S1

C ? ϕ2

C ◦ S2

C ◦ C ◦ S ξ

C ◦ S c∗

Note that since the formulas in C will come from both branches, and we are
working in a multiplicative calculus, after applying a binary rule we need to
contract the formulas from C to obtain the correct multiset.

Let F = ∀x.(¬Px ∨Qx) and G = ∃x.∃y.(¬Px ∨Qy). The context product
of F ` G (the end-sequent of our example proof) and the ground resolution
refutation above is:

F ` G,Pa Pa, F ` G,Qa
F, F ` G,G,Qa cut

F ` G,Qa
cl, cr

Qa, F ` G
F,F ` G,G cut

F ` G
cl, cr

Notice that the open premises of this derivation are exactly the end-sequents
of the projections, given the proper instantiations.

Definition 3.5 (CERES). Let ϕ be an LK proof of a skolemized sequent S,
CL(ϕ) its clause set and % a grounded resolution refutation of CL(ϕ). We first
construct %′ = S?%. Note that this is a derivation of S from a set of axioms C◦S,
with C ∈ CL(ϕ), which are exactly the end-sequents of the projections P(ϕ).
Now we define ϕ(%) by replacing all axioms of %′ by the respective projections.
By definition, ϕ(%) is an LK proof of S with only atomic cuts. We call it a
CERES normal form of ϕ with respect to %.

As a final step, the context product is joined with the instantiated projec-
tions in a proof with only atomic cuts (Note that the projections have been
abbreviated):

Pa ` Pa
` Pa,¬Pa

¬r

` Pa,¬Pa ∨Qβ
∨r

` Pa, ∃x.∃y.(¬Px ∨Qy)
∃∗r

F ` Pa, G
wl

Pa ` Pa
¬Pa,Pa `

¬l
Qa ` Qa

¬Pa ∨Qa,Pa ` Qa
∨l

∀x.(¬Px ∨Qx),Pa ` Qa
∀l

F,Pa ` Qa, G
wr

F, F ` G,G,Qa cut

F ` G,Qa
cl, cr

Qa ` Qa
Qa ` ¬Pa ∨Qa

∨r

Qa ` ∃x.∃y.(¬Px ∨Qy)
∃∗r

F,Qa ` G
wl

F, F ` G,G cut

F ` G
cl, cr
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Remark 3.1. A CERES normal form can also be defined via minimal projections;
in this case fewer contractions are needed to obtain the end-sequent. Additional
weakenings might be necessary to obtain the full end-sequent (though not in the
example above).

3.1. Extending to Intuitionistic Logic

If we try to apply CERES to an LJ proof, we encounter at first sight a few
technical problems. Although it is possible to obtain a characteristic clause set
and a resolution refutation, the projections and context product will, in general,
be classical derivations. The occurrence of positive atoms in clauses, i.e. atoms
on the right side of `, will possibly be in conflict with end-sequent ancestors on
the right, and LJ is a single conclusion calculus.

We have tried to work around this problem in a number of (simpler) ways,
but only to realize it worked for a fragment of LJ. For example, in [15], we
proposed a new resolution calculus that contains single-conclusion negation rules
and resolution on negated atoms. The clause set can thus be modified to have
no atoms on the right side, by using their negations on the left. Still violations
of LJ’s single-conclusion restriction might occur by negated atoms on the right.
Other attempts involved eliminating the atomic cuts a posteriori, either by using
Gentzen’s original rewriting rules or modified versions of them [16, Chapters 7
& 8]. Multi-conclusion calculi for intuitionistic logic were also considered but
without success (see discussion in [16, Chapter 4, Section 2]).

In order to see why simple modifications of the method or post-processing of
the proofs do not work, take the following example. This is an interesting proof
because it is an intuitionistic proof of a formula which is only valid in classical
logic. It is only possible because of the assumption of the excluded middle in
the antecedent. Let ϕ be the following proof, where cut ancestors are bold:

P ` P
P ` P ∨ ¬P

∨r

P ` P
P,¬P `

¬l

¬P ` ¬P
¬r

¬P ` P ∨ ¬P
∨r

P ∨ ¬P ` P ∨ ¬P
∨l

P ` P
¬P, P `

¬l

¬P ` ¬P
¬r

¬P,¬¬P `
¬l

¬P,¬¬P ` P
wr

¬P ` ¬¬P → P
→r

P ` P
P,¬¬P ` P

wl

P ` ¬¬P → P
→r

P ∨ ¬P ` ¬¬P → P
∨l

P ∨ ¬P ` ¬¬P → P
cut

The characteristic clause set of ϕ is: CL(ϕ) = {` P ; P ` ; P ` P}. Which
admits the (only non-redundant) resolution refutation:

` P P `
` R

The minimal projections are the following:
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ϕ[` P ]

P ` P
` P,¬P

¬r

¬¬P ` P
¬l

¬¬P ` P, P
wr

` P,¬¬P → P
→r

ϕ[P `]

P ` P
P,¬¬P ` P

wl

P ` ¬¬P → P
→r

Note that ϕ[` P ] is classical. The final ACNF is:

P ` P
` P,¬P

¬r

¬¬P ` P
¬l

¬¬P ` P, P
wr

` P,¬¬P → P
→r

P ` P
P,¬¬P ` P

wl

P ` ¬¬P → P
→r

` ¬¬P → P,¬¬P → P
cut

` ¬¬P → P
cr

P ∨ ¬P ` ¬¬P → P
wl

Note that the law of excluded middle is not used at all in the final proof,
which means that this proof is inherently classical. Also, the resolution refu-
tation used for CERES was the only one possible, which indicates that using
resolution refinements would not work. The only thing that could be done was
to use the tautological clause P ` P in a redundant resolution. Indeed, the
method presented in this paper and its completeness proof indicates that, in
the general case, this will be necessary.

4. Reductive cut-elimination

Now, we introduce a variation of the rewrite rules introduced by Gentzen
[10] for eliminating cuts from LJ-derivations. In this section, we define a binary
relation on LJ-derivations based on the reductive cut-elimination rewrite rules.
We shall see in Section 5 that, when two LJ-derivations are related in this way,
the projections constructed from these derivations are also somehow related.
This relationship between reductive cut-elimination and projections culminates
in one of the main results of this work, Lemma 5.3, which is referred to as the
main subsumption lemma.

Definition 4.1 (Cut-elimination rewrite rules). We define the set R of
rewrite rules for LJ as the ones below. In all sequents, ∆ is a set with at
most one formula and sets that are possibly modified by the application of an
inference rule are annotated with ′ or ′′.

Cut-elimination rules:

Over axiom inferences:
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A ` A
(ϕ)

A,Γ ` ∆

Γ, A ` ∆
cut

 
(ϕ)

A,Γ ` ∆

(ϕ)
Γ ` A A ` A

Γ ` A cut
 

(ϕ)
Γ ` A

Over weakening:

(ϕ1)
Γ1 `

Γ1 ` A
wr

(ϕ2)
A,Γ2 ` ∆

Γ1,Γ2 ` ∆
cut

 

(ϕ1)
Γ1 `

Γ1,Γ2 ` ∆
w∗r , w

∗
l

(ϕ1)
Γ1 ` A

(ϕ2)
Γ2 ` ∆

A,Γ2 ` ∆
wl

Γ1,Γ2 ` ∆
cut

 

(ϕ2)
Γ2 ` ∆

Γ1,Γ2 ` ∆
w∗l

Cut-shifting rules:

Over unary inferences:

(ϕ1)

Γ′1 ` A

Γ1 ` A
ρ (ϕ2)

A,Γ2 ` ∆

Γ1,Γ2 ` ∆
cut

 

(ϕ1)

Γ′1 ` A
(ϕ2)

A,Γ2 ` ∆

Γ′1,Γ2 ` ∆
cut

Γ1,Γ2 ` ∆
ρ

(ϕ1)
Γ1 ` A

(ϕ2)

A,Γ′2 ` ∆′

A,Γ2 ` ∆
ρ

Γ1,Γ2 ` ∆
cut

 

(ϕ1)
Γ1 ` A

(ϕ2)

A,Γ′2 ` ∆′

Γ1,Γ
′
2 ` ∆′

cut

Γ1,Γ2 ` ∆
ρ

Over binary inferences:

(ϕ1)
P,Γ1 ` A

(ϕ2)
Q,Γ2 ` A

P ∨Q,Γ1,Γ2 ` A
∨l

(ϕ3)
A,Γ3 ` ∆

P ∨Q,Γ1,Γ2,Γ3 ` ∆
cut

 

(ϕ1)
P,Γ1 ` A

(ϕ3)
A,Γ3 ` ∆

P,Γ1,Γ3 ` ∆
cut

(ϕ2)
Q,Γ2 ` A

(ϕ3σ)
A,Γ3 ` ∆

Q,Γ2,Γ3 ` ∆
cut

P ∨Q,Γ1,Γ2,Γ3,Γ3 ` ∆
∨l

P ∨Q,Γ1,Γ2,Γ3 ` ∆
c∗l

where σ is an eigenvariable-renaming making the proof regular3.

3A proof is said to be regular if all eigenvariables used are unique in the whole proof. In
general, such a strong requirement is not necessary, but it will be important for the transfor-
mations defined later.
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The only other possible left binary rule is →l:

(ϕ1)
Γ1 ` P

(ϕ2)
Q,Γ2 ` A

P → Q,Γ1,Γ2 ` A
→l

(ϕ3)
A,Γ3 ` ∆

P → Q,Γ1,Γ2,Γ3 ` ∆
cut

 

(ϕ1)
Γ1 ` P

(ϕ2)
Q,Γ2 ` A

(ϕ3)
A,Γ3 ` ∆

Q,Γ2,Γ3 ` ∆
cut

P → Q,Γ1,Γ2,Γ3 ` ∆
→l

For a binary rule applied to the right branch of cut, there are no special cases:

(ϕ1)
Γ1 ` A

(ϕ2)

A,Γ′2 ` ∆′
(ϕ3)

Γ′3 ` ∆′′

A,Γ2,Γ3 ` ∆
ρ

Γ1,Γ2,Γ3 ` ∆
cut

 

(ϕ1)
Γ1 ` A

(ϕ2)

A,Γ′2 ` ∆′

Γ1,Γ
′
2 ` ∆′

cut
(ϕ3)

Γ′3 ` ∆′′

Γ1,Γ2,Γ3 ` ∆
ρ

(ϕ1)
Γ1 ` A

(ϕ2)

Γ′2 ` ∆′
(ϕ3)

A,Γ′3 ` ∆′′

A,Γ2,Γ3 ` ∆
ρ

Γ1,Γ2,Γ3 ` ∆
cut

 

(ϕ2)

Γ′2 ` ∆′

(ϕ1)
Γ1 ` A

(ϕ3)

A,Γ′3 ` ∆′′

Γ1,Γ
′
3 ` ∆′′

cut

Γ1,Γ2,Γ3 ` ∆
ρ

Cut-simplification rules:

Of a cut on an ∧-formula:

(ϕ1)
Γ1 ` A

(ϕ2)
Γ2 ` B

Γ1,Γ2 ` A ∧B
∧r

(ϕ3)
A,Γ3 ` ∆

A ∧B,Γ3 ` ∆
∧l1

Γ1,Γ2,Γ3 ` ∆
cut

 

(ϕ1)
Γ1 ` A

(ϕ3)
A,Γ3 ` ∆

Γ1,Γ3 ` ∆
cut

Γ1,Γ2,Γ3 ` ∆
w∗l

(ϕ1)
Γ1 ` A

(ϕ2)
Γ2 ` B

Γ1,Γ2 ` A ∧B
∧r

(ϕ3)
B,Γ3 ` ∆

A ∧B,Γ3 ` ∆
∧l2

Γ1,Γ2,Γ3 ` ∆
cut

 

(ϕ2)
Γ2 ` B

(ϕ3)
B,Γ3 ` ∆

Γ2,Γ3 ` ∆
cut

Γ1,Γ2,Γ3 ` ∆
w∗l

Of a cut on an ∨-formula:

(ϕ1)
Γ1 ` A

Γ1 ` A ∨B
∨r1

(ϕ2)
A,Γ2 ` ∆

(ϕ3)
B,Γ3 ` ∆

A ∨B,Γ2,Γ3 ` ∆
∨l

Γ1,Γ2,Γ3 ` ∆
cut

 

(ϕ1)
Γ1 ` A

(ϕ2)
A,Γ2 ` ∆

Γ1,Γ2 ` ∆
cut

Γ1,Γ2,Γ3 ` ∆
w∗l

(ϕ1)
Γ1 ` B

Γ1 ` A ∨B
∨r2

(ϕ2)
A,Γ2 ` ∆

(ϕ3)
B,Γ3 ` ∆

A ∨B,Γ2,Γ3 ` ∆
∨l

Γ,Γ2,Γ3 ` ∆
cut

 

(ϕ1)
Γ1 ` B

(ϕ3)
B,Γ3 ` ∆

Γ1,Γ3 ` ∆
cut

Γ,Γ2,Γ3 ` ∆
w∗l

Of a cut on an →-formula:
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(ϕ1)
Γ1,A ` B

Γ1 ` A→ B
→r

(ϕ2)
Γ2 ` A

(ϕ3)
B,Γ3 ` ∆

A→ B,Γ2,Γ3 ` ∆
→l

Γ1,Γ2,Γ3 ` ∆
cut

 

(ϕ2)
Γ2 ` A

(ϕ1)
A,Γ1 ` B

(ϕ3)
B,Γ3 ` ∆

A,Γ1,Γ3 ` ∆
cut

Γ1,Γ2,Γ3 ` ∆
cut

Of a cut on an ¬-formula:

(ϕ1)
Γ1,A `
Γ1 ` ¬A

¬r

(ϕ2)
Γ2 ` A

¬A,Γ2 `
¬l

Γ1,Γ2 `
cut

 

(ϕ2)
Γ2 ` A

(ϕ1)
A,Γ1 `

Γ1,Γ2 `
cut

Of a cut on an ∃-formula:

(ϕ1)
Γ1 ` A[x/t]

Γ1 ` ∃x.Ax
∃r

(ϕ2)
A[x/α],Γ2 ` ∆

∃x.Ax,Γ2 ` ∆
∃l

Γ1,Γ2 ` ∆
cut

 

(ϕ1)
Γ1 ` A[x/t]

(ϕ2[α/t])
A[x/t],Γ2 ` ∆

Γ1,Γ2 ` ∆
cut

Of a cut on an ∀-formula:

(ϕ1)
Γ1 ` A[x/α]

Γ1 ` ∀x.Ax
∀r

(ϕ2)
A[x/t],Γ2 ` ∆

∀x.Ax,Γ2 ` ∆
∀l

Γ1,Γ2 ` ∆
cut

 

(ϕ1[α/t])
Γ1 ` A[x/t]

(ϕ2)
A[x/t],Γ2 ` ∆

Γ1,Γ2 ` ∆
cut

Of a cut on a contracted formula:

(ϕ1)
Γ1 ` A

(ϕ2)
A,A,Γ2 ` ∆

A,Γ2 ` ∆
cl

Γ1,Γ2 ` ∆
cut

 

(ϕ1)
Γ1 ` A

(ϕ1σ)
Γ1 ` A

(ϕ2)
A,A,Γ2 ` ∆

A,Γ1,Γ2 ` ∆
cut

Γ1,Γ1,Γ2 ` ∆
cut

Γ1,Γ2 ` ∆
c∗l

where σ is an eigenvariable-renaming making the proof regular.

Definition 4.2. Let ϕ,ψ be LJ-proofs. We define ϕ R′ ψ:

• if ϕ rewrites in one step to ψ according to the cut-elimination rewrite rules
specified in R′ ⊆ R; or

• if there exists a node ν in ϕ such that ϕ.ν  R′ χ and ψ = ϕ[χ]ν .
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We call R′ a cut-reduction relation. The reflexive transitive closure of R′

is denoted by  ∗R′ .

For this work, we will be interested in a particular subset of R:

Definition 4.3. We will denote by Ra the set of rules R without the cut-
elimination rules over atomic axioms.

The notation used for this set is motivated by the fact that, using these
rewrite rules, normalization always results in a proof with atomic cuts as the
top-most inferences.

Definition 4.4 (ACNF,ACNFtop). Let ϕ be an LJ-derivation. We say that ϕ
is in atomic cut normal form (ACNF) if it contains only atomic cuts. We say
that ϕ is in top atomic cut normal form (ACNFtop) if it is in ACNF and it is
irreducible under  Ra .

Top atomic cut normal forms will play a crucial role in the completeness
proof of intuitionistic CERES.

5. Proof Subsumption

We first extend the subsumption concept from clauses to full sequents. Ba-
sically, the definition is the same, with the exception that we consider ⊆ as
multiset inclusion, instead of set inclusion. In a second step, we define a notion
of subsumption for LK-proofs.

Definition 5.1 (Sequent subsumption). Let S : Γ ` ∆ and S′ : Γ′ ` ∆′.
We define S ⊆ S′ if Γ ⊆ Γ′ and ∆ ⊆ ∆′ (⊆ denotes the multiset inclusion).
Moreover, we say that S subsumes S′ via ϑ if there exists a substitution ϑ on
first-order variables such that Sϑ ⊆ S′.

Proof subsumption is basically a generalization of the subsumption concept
for resolution proofs [14]. It is, however, much more involved as LK-proofs
have more rules. It is defined inductively on the number of inferences for proofs
without strong quantifier inferences.

Definition 5.2 (Proof subsumption (sketch)). Let ϕ and ψ be LK-proofs
without cuts or strong quantifier inferences and ϑ a substitution on first-order
variables. We say that ϕ ≤ss ψ via ϑ, or equivalently (ϕ,ψ, ϑ) is a proof
subsumption, if:

Base case: ϕ is an axiom S and Sϑ ⊆ es(ψ). Note that, if ψ is an axiom, then
ϕ must be an axiom as well.

Inductive cases: Let (ϕi, ψi, ϑ) be proof subsumptions with es(ϕi) = Γi ` ∆i

and es(ψi) = Πi ` Λi:
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• Assume that an inference ρ2 is applied to a finite subset {ψ1, ..., ψk} of
proofs, resulting in a proof ψ with end-sequent Π ` Λ. Then (ϕi, ψ, ϑ),
for some 1 ≤ i ≤ k, is a proof subsumption iff (Γi ` ∆i)ϑ ⊆ Π ` Λ,

• Assume that an inference ρ1 is applied to a finite subset {ϕ1, ..., ϕk} of
proofs, resulting in a proof ϕ with end-sequent Γ ` ∆. Then (ϕ,ψi, ϑ

′),
for some 1 ≤ i ≤ k and substitution ϑ′, is a proof subsumption iff (Γ `
∆)ϑ′ ⊆ Πi ` Λi.

• Assume that an inference ρ1 is applied to a finite subset {ϕ1, ..., ϕk} of
proofs, resulting in a proof ϕ with end-sequent Γ ` ∆, and an inference
ρ2 is applied to a finite subset {ψ1, ..., ψk} of proofs, resulting in a proof
ψ with end-sequent Π ` Λ. Then (ϕ,ψ, ϑ′) for some substitution ϑ′ is a
proof subsumption iff (Γ ` ∆)ϑ′ ⊆ Π ` Λ.

Definition 5.3 (Proof subsumption (detailed)). Below we define the rela-
tion ϕ ≤ss ψ (ϕ subsumes ψ) for cut-free LK-proofs ϕ and ψ without strong
quantifier inferences.

Base case: Let ϕ be an axiom S. Then ϕ ≤ss ψ via ϑ (or (ϕ,ψ, ϑ) is a proof
subsumption) iff Sϑ ⊆ es(ψ).

Inductive cases: Assume that (ϕi, ψi, ϑi), i ∈ {1, 2}, are proof subsumptions.
We distinguish cases based on the rule ρ2 applied to ψi and, for each possibility,
analyse the cases for ϕi.

1. ¬r: Then ψ is
(ψ1)

A,Π ` Λ

Π ` Λ,¬A
¬r

Let es(ϕ1) = Γ ` ∆. We distinguish two cases:

(a) (Γ ` ∆)ϑ1 ⊆ Π ` Λ
Then (ϕ1, ψ, ϑ1) is a proof subsumption.
Additionally, we can define ϕ as:

(ϕ1)
Γ ` ∆

Γ ` ∆,¬A0

wr

where A0ϑ1 = A and then also (ϕ,ψ, ϑ1) is a proof subsumption.

(b) (Γ ` ∆)ϑ1 6⊆ Π ` Λ
By the induction hypothesis we know that (Γ ` ∆)ϑ1 ⊆ A,Π ` Λ.
Then it must be the case that Γ = A0,Γ

′ with (Γ′ ` ∆)ϑ1 ⊆ Π ` Λ
and A0ϑ1 = A.
In this case we define ϕ:

(ϕ1)
A0,Γ ` ∆

Γ ` ∆,¬A0

¬r

and (ϕ,ψ, ϑ1) is a proof subsumption.
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2. ¬l: analogous to ¬r.

3. →r: Then ψ is
(ψ1)

A,Π ` Λ, B

Π ` Λ, A→ B
→r

We assume that V (ϕ1)∩V (ψ1) = ∅4 and dom(ϑ1) ⊆ V (ϕ1). Let es(ϕ1) =
Γ ` ∆. We distinguish several cases:

(a) (Γ ` ∆)ϑ1 ⊆ Π ` Λ
Then (ϕ1, ψ, ϑ1) is a proof subsumption.
Additionally, we can define ϕ as

(ϕ1)
Γ ` ∆

Γ ` ∆, A0 → B0

wr

where (A0 → B0)ϑ1 = (A → B) and then also (ϕ,ψ, ϑ1) is a proof
subsumption.

(b) (Γ ` ∆)ϑ1 6⊆ Π ` Λ

i. (Γ ` ∆)ϑ1 ⊆ A,Π ` Λ
Then Γ = A0,Γ

′ such that (Γ′ ` ∆)ϑ1 ⊆ Π ` Λ and A0ϑ = A.
We thus define ϕ as

(ϕ1)

A0,Γ
′ ` ∆

A0,Γ
′ ` ∆, B

wr

Γ′ ` ∆, A0 → B
→r

and (ϕ,ψ, ϑ1) is a proof subsumption. Note that Bϑ1 = B as
B occurs in ψ1 and V (ψ1) ∩ dom(ϑ1) = ∅. So (Γ′ ` ∆, A0 →
B)ϑ1 ⊆ Π ` Λ, A→ B.

ii. (Γ ` ∆)ϑ1 ⊆ Π ` Λ, B Then ∆ = ∆′, B0 such that (Γ ` ∆′)ϑ1 ⊆
Π ` Λ and B0ϑ1 = B. We thus define ϕ as

(ϕ1)

Γ ` ∆′, B0

A,Γ ` ∆′, B0

wl

Γ ` ∆′, A→ B0

→r

and (ϕ,ψ, ϑ) is a proof subsumption.

iii. Neither 3(b)i nor 3(b)ii hold.

4V (·) denotes free variables. See preliminaries for further details, Section 2
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Then Γ = A0,Γ
′ and ∆ = ∆′, B0 with (Γ′ ` ∆′)ϑ1 ⊆ Π ` Λ and

A0ϑ1 = A, B0ϑ1 = B. We define ϕ as

(ϕ1)

A0,Γ
′ ` ∆′, B0

Γ′ ` ∆′, A0 → B0

→r

and (ϕ,ψ, ϑ) is a proof subsumption.

4. ∧r: Then ψ is

(ψ1)
Π1 ` Λ1, A

(ψ2)
Π2 ` Λ2, B

Π1,Π2 ` Λ1,Λ2, A ∧B
∧r

We assume that V (ϕi) ∩ V (ψi) = ∅ and dom(ϑi) = V (ϕi) for i ∈ {1, 2}
and thus ϑ = ϑ1 ∪ ϑ2 is well-defined.
Let es(ϕ1) = Γ1 ` ∆1 and es(ϕ2) = Γ2 ` ∆2. We distinguish 3 cases:
(a) (Γ1 ` ∆1)ϑ1 ⊆ Π1 ` Λ1.

Then (ϕ1, ψ, ϑ1) is a proof subsumption.
Additionally, let Γ∗ϑ ⊆ Π2 and ∆∗ϑ ⊆ Λ2. We can define ϕ as

(ϕ1)
Γ1 ` ∆1

Γ1,Γ
∗ ` ∆1,∆

∗ w
∗
l , w

∗
r

Then also (ϕ,ψ, ϑ) is a proof subsumption.
(b) (Γ2 ` ∆2)ϑ2 ⊆ Π2 ` Λ2.

Then (ϕ2, ψ, ϑ2) is a proof subsumption.
Additionally, let Γ∗ϑ ⊆ Π1 and ∆∗ϑ ⊆ Λ1. We can define ϕ as

(ϕ2)
Γ2 ` ∆2

Γ∗,Γ2 ` ∆∗,∆2
w∗l , w

∗
r

Then also (ϕ,ψ, ϑ) is a proof subsumption.
(c) Neither 4a nor 4b hold.

Then ∆1 = ∆′1, A0 and ∆2 = ∆′2, B0 such that (Γ1 ` ∆′1)ϑ1 ⊆ Π1 `
Λ1 and (Γ2 ` ∆′2)ϑ1 ⊆ Π2 ` Λ2, and A0ϑ1 = A,B0ϑ2 = B. We
define ϕ as

(ϕ1)

Γ1 ` ∆′1, A0

(ϕ2)

Γ2 ` ∆′2, B0

Γ1,Γ2 ` ∆′1,∆
′
2, A0 ∧B0

∧r

and (ϕ,ψ, ϑ) as proof subsumption.

5. →l and ∨l: analogous to ∧r.

6. ∀l: Then ψ is
(ψ1)

A{x← t},Π ` Λ

∀x.A,Π ` Λ
∀l

Let es(ϕ1) = Γ ` ∆. We distinguish two cases:
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(a) (Γ ` ∆)ϑ1 ⊆ Π ` Λ.
Then (ϕ1, ψ, ϑ1) is a proof subsumption.
Additionally, let A0 be a formula such that (∀x.A0)ϑ1 = ∀x.A. We
can define ϕ as

(ϕ1)
Γ ` ∆

∀x.A0,Γ ` ∆
wl

and (ϕ,ψ, ϑ1) is a proof subsumption.
(b) (Γ ` ∆)ϑ1 6⊆ Π ` Λ.

Then Γ = A0{x← s},Γ′ such that (Γ′ ` ∆)ϑ1 ⊆ Π ` Λ and A0{x←
s}ϑ1 = A{x← t}. We define ϕ as

(ϕ1)

A0{x← s},Γ′ ` ∆

∀x.A0,Γ
′ ` ∆

∀l

and (ϕ,ψ, ϑ1) is a proof subsumption.

7. ∃r: analogous to ∀l.

8. wl: Then ψ is
(ψ1)

Π ` Λ
A,Π ` Λ

wl

In this case, (ϕ1, ψ, ϑ1) is a proof subsumption.
Additionally, let es(ϕ1) = Γ ` ∆ and A0 a formula with A0ϑ1 = A. We
can define ϕ as

(ϕ1)
Γ ` ∆

A0,Γ ` ∆
wl

Then also (ϕ,ψ, ϑ1) is a proof subsumption.

9. wr: analogous to wl.

10. cl: Then ψ is
(ψ1)

A,A,Π ` Λ

A,Π ` Λ
cl

Let es(ϕ1) = Γ ` ∆. We distinguish two cases:

(a) (Γ ` ∆)ϑ1 ⊆ A,Π ` Λ.
Then (ϕ1, ψ, ϑ1) is a proof subsumption.

(b) (Γ ` ∆)ϑ1 6⊆ A,Π ` Λ.
Then Γ = A0, A1,Γ

′ such that (Γ′ ` ∆)ϑ1 ⊆ Π ` Λ and A0ϑ1 = A
and A1ϑ1 = A. Therefore, ϑ1 is a unifier of {A0, A1}, and so there
exists a most general unifier σ of {A0, A1}. In particular, there exists
a substitution η such that ϑ1 = ση. We define ϕ as

(ϕ1σ)

A0σ,A1σ,Γ
′σ ` ∆σ

Aσ,Γ′σ ` ∆σ
cl
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and (ϕ,ψ, η) is a proof subsumption.

11. cr: analogous to cl.

This completes the definition of proof subsumption.

We need proof subsumptions only for projections and their grounded reso-
lutions (to be defined in Section 6). Therefore, there is no need to take care of
strong quantifier inferences or cuts.

Example 5.1. Let ϕ =

P (x) ` P (x)

¬Q(x), P (x) ` P (x)
wl

¬Q(x) ` P (x),¬P (x)
¬r

` P (x),¬Q(x)→ ¬P (x)
→r

` P (x), ∃z.(¬Q(z)→ ¬P (z))
∃r

and ψ =

P (f(a)) ` P (f(a))

¬P (f(a)), P (f(a)) ` P (f(a))
wl

Q(f(a)) ` Q(f(a))

¬Q(f(a)), Q(f(a)) ` Q(f(a))
wl

P (f(a)),¬P (f(a)) ∨Q(f(a)),¬Q(f(a)) ` P (f(a)), Q(f(a))
∨l

¬P (f(a)) ∨Q(f(a)),¬Q(f(a)) ` ¬P (f(a)), P (f(a)), Q(f(a))
¬r

∀x(¬P (x) ∨Q(x)),¬Q(f(a)) ` ¬P (f(a)), P (f(a)), Q(f(a))
∀l

∀x(¬P (x) ∨Q(x)) ` ¬Q(f(a))→ ¬P (f(a)), P (f(a)), Q(f(a))
→r

∀x(¬P (x) ∨Q(x)) ` ∃z(¬Q(z)→ ¬P (z)), P (f(a)), Q(f(a))
∃r

We show that (ϕ,ψ, ϑ) for ϑ = {x← f(a)} is a proof subsumption.
By definition the proof ϕ1 : P (x) ` P (x) subsumes ψ1 : P (f(a)) ` P (f(a))

and (ϕ1, ψ1, ϑ) is a proof subsumption. Let ψ2 =

P (f(a)) ` P (f(a))

¬P (f(a)), P (f(a)) ` P (f(a))
wl

Then, by the case 8 for wl, (ϕ1, ψ2, ϑ) is a proof subsumption. Now consider
ψ3 =

P (f(a)) ` P (f(a))

¬P (f(a)), P (f(a)) ` P (f(a))
wl

Q(f(a)) ` Q(f(a))

¬Q(f(a)), Q(f(a)) ` Q(f(a))
wl

P (f(a)),¬P (f(a)) ∨Q(f(a)),¬Q(f(a)) ` P (f(a)), Q(f(a))
∨l

We define ϕ2 =
P (x) ` P (x)

¬Q(x), P (x) ` P (x)
wl

By the ∨l-case 5 in the subsumption definition, we get that (ϕ2, ψ3, ϑ) is a
proof subsumption.
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Now consider ψ4 =

P (f(a)) ` P (f(a))

¬P (f(a)), P (f(a)) ` P (f(a))
wl

Q(f(a)) ` Q(f(a))

¬Q(f(a)), Q(f(a)) ` Q(f(a))
wl

P (f(a)),¬P (f(a)) ∨Q(f(a)),¬Q(f(a)) ` P (f(a)), Q(f(a))
∨l

¬P (f(a)) ∨Q(f(a)),¬Q(f(a)) ` ¬P (f(a)), P (f(a)), Q(f(a))
¬r

Let ϕ3 =
P (x) ` P (x)

¬Q(x), P (x) ` P (x)
wl

¬Q(x) ` P (x),¬P (x)
¬r

By ¬r case 1b we get (ϕ3, ψ4, ϑ) as a proof subsumption.
Let ψ5 =

P (f(a)) ` P (f(a))

¬P (f(a)), P (f(a)) ` P (f(a))
wl

Q(f(a)) ` Q(f(a))

¬Q(f(a)), Q(f(a)) ` Q(f(a))
wl

P (f(a)),¬P (f(a)) ∨Q(f(a)),¬Q(f(a)) ` P (f(a)), Q(f(a))
∨l

¬P (f(a)) ∨Q(f(a)),¬Q(f(a)) ` ¬P (f(a)), P (f(a)), Q(f(a))
¬r

∀x(¬P (x) ∨Q(x)),¬Q(f(a)) ` ¬P (f(a)), P (f(a)), Q(f(a))
∀l

Then by ∀l case 6a we get (ϕ3, ψ5, ϑ) as a proof subsumption.
Let ψ6 =

P (f(a)) ` P (f(a))

¬P (f(a)), P (f(a)) ` P (f(a))
wl

Q(f(a)) ` Q(f(a))

¬Q(f(a)), Q(f(a)) ` Q(f(a))
wl

P (f(a)),¬P (f(a)) ∨Q(f(a)),¬Q(f(a)) ` P (f(a)), Q(f(a))
∨l

¬P (f(a)) ∨Q(f(a)),¬Q(f(a)) ` ¬P (f(a)), P (f(a)), Q(f(a))
¬r

∀x(¬P (x) ∨Q(x)),¬Q(f(a)) ` ¬P (f(a)), P (f(a)), Q(f(a))
∀l

∀x(¬P (x) ∨Q(x)) ` ¬Q(f(a))→ ¬P (f(a)), P (f(a)), Q(f(a))
→r

We define ϕ4 =
P (x) ` P (x)

¬Q(x), P (x) ` P (x)
wl

¬Q(x) ` P (x),¬P (x)
¬r

` P (x),¬Q(x)→ ¬P (x)
→r

By →r case 3(b)ii we get (ϕ4, ψ6, ϑ) as a proof subsumption.
Finally, by ∃r case analogous to 6b, (ϕ,ψ, ϑ) is a proof subsumption.

Proposition 5.1 (Transitivity of proof subsumption). Let (ϕ, ψ, ϑ) and
(ψ, χ, λ) be proof subsumptions such that V (ϕ)∩V (ψ) = ∅ and dom(ϑ) ⊆ V (ϕ),
dom(λ) ⊆ V (ψ). Then (ϕ, χ, ϑλ) is a proof subsumption.

Proof. Let us consider the case when ϕ and ψ are axioms and χ is an arbitrary
LK-proof. We know, by definition, (ψ, χ, λ) is equivalent to saying that es(ψ)
(which is just the axiom) subsumes es(χ) via λ, i.e., es(ψ)λ ⊆ es(χ). We also
know that es(ϕ)ϑ ⊆ es(ψ) (which are both just the axioms). Since sequent
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subsumption is transitive, we have that es(ϕ)ϑλ ⊆ es(χ). Therefore, (ϕ, χ, ϑλ)
is a proof subsumption.

Now let us assume that ϕ is an axiom and both ψ and χ are arbitrary LK-
proofs. We know, by definition, that es(ϕ)ϑ ⊆ es(ψ) and es(ψ)λ ⊆ es(χ). Again,
by transitivity, we have that es(ϕ)ϑλ ⊆ es(χ), where es(ϕ) is simply an axiom.
By the definition of proof subsumption (base case), we thus have that (ϕ, χ, ϑλ)
is a proof subsumption.

Now let us consider the case when ϕ, ψ, and χ are arbitrary LK-proofs.
We know by the definition of proof subsumption that the proof subsumption
(ϕ,ψ, ϑ) is constructed from base case proof subsumptions (Aϕ1 , ψ

sub
1 , ϑ1), · · · ,

(Aϕn, ψ
sub
n , ϑn), where the Aϕi are axioms. Also, (ψ, χ, λ) can be deconstructed

into proof subsumptions (ψsub1 , χsub1 , λ1), · · · , (ψsubn , χsubn , λn). By our above ar-
guments, (Aϕ1 , χ

sub
1 , ϑ1λ1), · · · , (Aϕn, χsubn , ϑnλn) are proof subsumptions. We

can reconstruct χ from χsub1 , · · · , χsubn and ϕ from Aϕ1 , . . . , A
ϕ
n using the defini-

tion of proof subsumption and the removed inference rules, and thus, (ϕ, χ, ϑλ)
is a proof subsumption.

Proof subsumption, being based on multiset inclusion, fulfills the following
property:

Theorem 5.1. Let (ϕ,ψ, ϑ) be a proof subsumption and ψ be an intuitionistic
proof. Then ϕ is intuitionistic as well.

Proof. Since (ϕ,ψ, ϑ) is a proof subsumption, then for every sequent S in ϕ,
there exists a sequent S′ in ψ such that Sϑ ⊆ S′, for some substitution ϑ′ (this
property follows from the definition of proof subsumption). As ψ is intuitionis-
tic, all its sequents have at most one formula on the right side. So let S : Γ ` ∆
be a sequent in ϕ; then there exists a sequent S′ : Γ′ ` ∆′ in ψ and a substitution
ϑ such that Γϑ ⊆ Γ′,∆ϑ ⊆ ∆′. As S′ is intuitionistic |∆′| ≤ 1, and so |∆ϑ| ≤ 1.
As ∆ is a multiset we have |∆ϑ| = |∆|; so ϕ is intuitionistic.

This result guarantees that the proof, eventually obtained by grounded proof
resolution on the general (subsuming) level, is intuitionistic, provided that the
proof obtained by grounded resolution of the ACNFtop’s projections is intuition-
istic as well.

5.1. Projection Subsumption

Using the subsumption principle for proofs we can relate the projections of
two proofs that differ only by the application of some of Gentzen’s reduction
rules. In this section, we will show that, if ϕ  Ra ϕ′, then every projection
of ϕ′ is subsumed by some projection of ϕ. This result is non-trivial, since the
reduction steps might replace full subproofs even with different end-sequents.

Definition 5.4 (Linearity). A cut-free proof is (ν, C)-linear if es(ϕ.ν) = C ◦S
and C is passive below ν, i.e. on the path π(ν) from ν to the end-sequent there
are no inferences on the subsequent C. The path π(ν) is called a C-linear path
in ϕ from ν.
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Observe that if C is the clause part of es(ϕ.ν) on some node ν of a projection
ϕ to some clause, then ϕ is (ν, C)-linear by the definition of projections.

Definition 5.5 (Dependency of nodes). Let ν be a node in the proof ϕ. A
node µ in ϕ is called ν-dependent if either µ occurs in ϕ.ν or µ occurs on the path
from ν to the end-sequent. If µ is not ν-dependent it is called ν-independent.

Now we state two lemmas which describe proof transformations arising from
projections when proofs are subjected to reductive cut-elimination. The first
lemma is relevant for the cut-simplification of a universally quantified formula.

Lemma 5.1. Let ϕ be a skolemized cut-free proof, ν be a node in ϕ such that
es(ϕ.ν) = C ◦ S and ϕ is (ν, C)-linear. Let (ϕ.ν, ψ, ϑ) be a proof subsumption
such that es(ψ) = Cϑ ◦ Sϑ and for all ν-independent nodes µ in ϕ we have
dom(ϑ) ∩ V (S(µ)) = ∅. We define ϕ′ as follows: replace ϕ.ν in ϕ by ψ and
then replace the (ν, C)-linear path from ν in ϕ by a (ν, Cϑ)-linear path. Then
(ϕ,ϕ′, ϑ) is a proof subsumption.

Proof. By induction on the length l(π) of the (ν, C)-linear path π.

Base case: l(π) = 0: trivial, as ν is the end node of ϕ. So ϕ.ν = ϕ and ϕ′ = ψ.

Induction hypothesis: Assume that the lemma holds for all proofs such that
for the C-linear path π in ϕ from ν we have l(π) ≤ n.

Inductive cases: Assume l(π) = n + 1. Then π = π′ν0 where ν0 is the end
node of ϕ. We distinguish two cases:

(a) The last inference in ϕ is unary. Then ϕ is of the form

(ϕ1)

µ : C1,Γ
′ ` ∆′, C2

ν0 : C1,Γ ` ∆, C2
ξ

where µ is the predecessor node of the end-sequent, C = C1 ` C2 and
ξ is an inference acting on Γ′ ` ∆′ (note that by C-linearity, there is no
inference on the atoms in C). By definition, ϕ′ is of the form

(ϕ′1)

µ′ : C1ϑ,Γ
′ϑ ` ∆′ϑ,C2ϑ

ν′0 : C1ϑ,Γϑ ` ∆ϑ,C2ϑ
ξ

where ξ has the same auxiliary formulas as in ϕ. By the induction hy-
pothesis, (ϕ1, ϕ

′
1, ϑ) is a proof subsumption and, by Definition 5.3 for unary

inferences, (ϕ,ϕ′, ϑ) is a proof subsumption as well.
(b) The last inference in ϕ is binary. Without loss of generality, we assume that

ν and the C-linear path are on the side of the left premise. Then ϕ is of
the form

(ϕ1)

µ1 : C1,Γ
′
1 ` ∆′1, C2

(ϕ2)

µ2 : Γ′2 ` ∆′2
ν0 : C1,Γ1,Γ2 ` ∆1,∆2, C2

ξ
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where C = C1 ` C2 and ξ is a binary inference acting on Γ′1 ` ∆′1 and
Γ′2 ` ∆′2, where the principal formula of ξ lies in Γ1,Γ2 ` ∆1,∆2. Note
that, for the case ∨l, the binary rule is not purely multiplicative, but it is
easy to see that the arguments below are the same. By definition, ϕ′ is of
the form

(ϕ′1)

µ′1 : C1ϑ,Γ
′
1ϑ ` ∆′1ϑ,C2ϑ

(ϕ2)

µ2 : Γ′2 ` ∆′2

ν′0 : C1ϑ,Γ1ϑ,Γ2 ` ∆1ϑ,∆2, C2ϑ
ξ

By induction hypothesis, (ϕ1, ϕ
′
1, ϑ) is a proof subsumption. As µ2 is ν-

independent we have (by assumption on ϑ) V (ϕ2) ∩ dom(ϑ) = ∅ and thus
(ϕ2, ϕ2, ϑ) is a proof subsumption. Then, by Definition 5.3 (binary case),
(ϕ,ϕ′, ϑ) is a proof subsumption as well.

The next lemma describes a typical case arising in projections when a cut-
shifting rule is applied.

Lemma 5.2. Let ϕ be a skolemized cut-free proof, ν be a node in ϕ such that
es(ϕ.ν) = C ◦ S and ϕ is (ν, C)-linear. Let (ϕ.ν, ψ, ∅) be a proof subsumption
such that es(ψ) = C ◦D ◦ S for a sequent D. We define ϕ′ as follows: replace
ϕ.ν in ϕ by ψ and replace the C-linear path π(ν) by a C ◦D-linear path. Then
(ϕ,ϕ′, ∅) is a proof subsumption.

Proof. By induction on the length l(π) of the (ν, C)-linear path π.

Base case: l(π) = 0: trivial as ϕ = ϕ.ν and ϕ′ = ψ.

Induction hypothesis: Assume that the lemma holds for all proofs such that
for the C-linear path π in ϕ from ν we have l(π) ≤ n.

Inductive cases: Assume l(π) = n+ 1. We distinguish two cases:

(a) The last inference in ϕ is unary. Then ϕ is of the form

(ϕ1)

µ : C1,Γ
′ ` ∆′, C2

ν0 : C1,Γ ` ∆, C2
x

where µ is the predecessor node of the end-sequent, C = C1 ` C2 and x is
an inference acting on Γ′ ` ∆′. By definition, ϕ′ is of the form

(ϕ′1)

µ′ : C1, D1,Γ
′ ` ∆′, C2, D2

ν′0 : C1, D1,Γ ` ∆, C2, D2

x

For D = D1 ` D2. By the induction hypothesis, (ϕ1, ϕ
′
1, ∅) is a proof sub-

sumption. By Definition 5.3 (unary case) (ϕ,ϕ′, ∅) is a proof subsumption
as well.
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(b) The last inference in ϕ is binary. Without loss of generality, we assume that
the C-linear path is on the side of the left premise. Then ϕ is of the form

(ϕ1)

µ1 : C1,Γ
′
1 ` ∆′1, C2

(ϕ2)

µ2 : Γ′2 ` ∆′2
ν0 : C1,Γ1,Γ2 ` ∆1,∆2, C2

x

where C = C1 ◦ C2 and x is a binary inference acting on Γ′1 ` ∆′1 and
Γ′2 ` ∆′2, where the principal formula of x lies in Γ1,Γ2 ` ∆1,∆2. By
definition, ϕ′ is of the form

(ϕ1)

µ′1 : C1, D1,Γ
′
1 ` ∆′1, C2, D2

(ϕ2)

µ2 : Γ′2 ` ∆′2

ν′0 : C1, D1,Γ1,Γ2 ` ∆1,∆2, C2, D2

x

By the induction hypothesis, we know that (ϕ1, ϕ
′
1, ∅) is a proof subsumption.

Obviously, (ϕ2, ϕ2, ∅) is also a proof subumption. Then, by Definition 5.3 (bi-
nary case), (ϕ,ϕ′, ∅) is a proof subsumption as well.

The following lemma shows that for one-step proof reduction ϕ Ra ϕ′, the
projections of ϕ′ are “redundant” with respect to the projections of ϕ, in the
sense that they are subsumed. It is worth noting that, although ϕ and ϕ′ are
LJ-proofs, their projections are possibly classical.

Lemma 5.3 (Main Subsumption Lemma). Let ϕ Ra ϕ′ and ψ′ be a projection
for ϕ′. Then there exists a projection ψ for ϕ and a substitution ϑ such that
(ψ,ψ′, ϑ) is a proof subsumption.

Proof. We show that the lemma holds for each of the rules in Ra.

Cut-elimination rule:

Over weakening:

1. The cut-formula on the left branch is weakened. Then ϕ contains a node
ν such that:

(ϕ1)
Γ1 `

Γ1 ` A
wr

(ϕ2)
A,Γ2 ` ∆

Γ1,Γ2 ` ∆
cut

And ϕ.ν is reduced to χ:

(ϕ1)
Γ1 `

Γ1,Γ2 ` ∆
w∗l , w

∗
r

We define ϕ′ = ϕ[χ]ν . By definition 3.1, the characteristic clause sets are:

CL(ϕ.ν) = CL(ϕ1) ∪ CL(ϕ2)

CL(χ) = CL(ϕ1)
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This means that CL(ϕ′) ⊂ CL(ϕ) and consequently all projections of ϕ′

are also projections of ϕ, since no inference on end-sequent ancestors was
modified5. Therefore, for every projection ψ′ of ϕ′, we take ψ′ itself as a
projection of ϕ and the proof subsumption (ψ′, ψ′, ∅) holds.

2. The cut formula on the right branch is weakened: analogous to the previ-
ous case.

Cut-shifting rules:

Over unary inferences:

1. A unary inference ρ is applied to the left branch of a cut on node ν, so
ϕ.ν is

(ϕ1)

Γ′1 ` A
Γ1 ` A

ρ (ϕ2)
A,Γ2 ` ∆

Γ1,Γ2 ` ∆
cut

Then ϕ.ν reduces to χ:

(ϕ1)

Γ′1 ` A
(ϕ2)

A,Γ2 ` ∆

Γ′1,Γ2 ` ∆
cut

Γ1,Γ2 ` ∆
ρ

and we define ϕ′ = ϕ[χ]ν . Notice that CL(ϕ) = CL(ϕ′). We distinguish
two cases:

(a) ρ operates on a cut-ancestor. Then the rule shifting will not affect
the projections and, since the clause sets are the same, so are the
projections of ϕ and ϕ′.

(b) ρ operates on an end-sequent ancestor. Let ψ′ be a projection for
ϕ′.ν. Then ψ′ either goes over ϕ1 or over ϕ2. If ψ′ goes over ϕ1 it is
of the form

(ψ′1)
~C, ∗Γ′1 ` ~D

~C, ∗Γ′1,
∗Γ2 ` ∗∆, ~D

w∗l , w
∗
r

~C, ∗Γ1,
∗Γ2 ` ∗∆, ~D

ρ

where ∗Γ1, ∗Γ′1, ∗Γ2 and ∗∆1 are suitable sub-multisets of Γ1, Γ′1,

Γ2 and ∆, respectively, and ~C ` ~D is a clause. The proof ψ:

(ψ′1)
~C, ∗Γ′1 ` ~D
~C, ∗Γ1 ` ~D

ρ

~C, ∗Γ1,
∗Γ2 ` ∗∆, ~D

w∗l , w
∗
r

5Remember that projections are only composed by rules operating on end-sequent ances-
tors. See Definition 3.2.
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is a projection for ϕ.ν which subsumes ψ′. Note that ψ and ψ′ share
the same end-sequent. So any projection for ϕ′ which is an extension
of ψ′ is subsumed by a projection for ϕ.
If ψ′ goes over ϕ2 it is of the form

(τ)
~E, ∗Γ2 ` ∗∆, ~F

~E, ∗Γ1,
∗Γ2 ` ∗∆, ~F

w∗l

~E, ∗Γ1,
∗Γ2 ` ∗∆, ~F

ρ

where ~E ` ~F is a clause. Here, we define ψ:

(τ)
~E, ∗Γ2 ` ∗∆, ~F

~E, ∗Γ1,
∗Γ2 ` ∗∆, ~F

w∗l

ψ is a projection for ϕ.ν which subsumes ψ′. So any projection for
ϕ′ which is an extension of ψ′ is subsumed by a projection for ϕ.

2. A unary inference ρ is applied to the right branch: analogous to the pre-
vious case.

Over binary inferences:

1. Shifting the cut over the ∨l-rule: Let ϕ.ν =

(ϕ1)
P,Γ1 ` A

(ϕ2)
Q,Γ2 ` A

P ∨Q,Γ1,Γ2 ` A
∨l

(ϕ3)
A,Γ3 ` ∆

P ∨Q,Γ1,Γ2,Γ3 ` ∆
cut

Then ϕ.ν reduces to χ

(ϕ1)
P,Γ1 ` A

(ϕ3)
A,Γ3 ` ∆

P,Γ1,Γ3 ` ∆
cut

(ϕ2)
Q,Γ2 ` A

(ϕ3σ)
A,Γ3 ` ∆

Q,Γ2,Γ3 ` ∆
cut

P ∨Q,Γ1,Γ2,Γ3,Γ3 ` ∆
∨r

P ∨Q,Γ1,Γ2,Γ3 ` ∆
c∗l

where σ is a renaming substitution for eigenvariables in ϕ3 to keep the
proof regular. As usual, we define ϕ′ = ϕ[χ]ν . In this case, the clause sets
of the two proofs are different:

CL(ϕ.ν) = (CL(ϕ1) ? CL(ϕ2)) ∪ CL(ϕ3)

CL(χ) = (CL(ϕ1) ∪ CL(ϕ3)) ? (CL(ϕ2) ∪ CL(ϕ3σ))

where ? ∈ {∪,×}, depending on whether P ∨ Q is a cut or end-sequent
ancestor. We distinguish two cases:
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(a) P ∨Q is an ancestor of a cut. In this case, we have:

CL(ϕ.ν) = CL(ϕ1) ∪ CL(ϕ2) ∪ CL(ϕ3)

CL(χ) = CL(ϕ1) ∪ CL(ϕ3) ∪ CL(ϕ2) ∪ CL(ϕ3σ)

This means that all projections of ϕ are projections of ϕ′, and more-
over ϕ′ contains projections that are simply different instantiations
of ϕ’s projections. We analyze all these cases:

Consider a projection ψ′ for ϕ′.ν. If ψ′ goes over ϕ1, ϕ2 or ϕ3, then
ψ′ is also a projection for ϕ.ν with the same end-sequent. In these
cases the corresponding projection for ϕ′ is also a projection for ϕ.

If ψ′ goes over ϕ3σ, then there is a projection ψ for ϕ.ν such that
ψσ = ψ′ and ψ subsumes ψ′. Now consider a projection τ ′ for ϕ′

which is an extension of ψ′. Then, by Lemma 5.1, we find a projection
τ for ϕ which subsumes τ ′.

(b) P ∨ Q is an end-sequent ancestor. In this case, the (normalized)
clause sets are:

CL(ϕ.ν) =(CL(ϕ1)× CL(ϕ2)) ∪ CL(ϕ3)

CL(χ) =(CL(ϕ1)× CL(ϕ2)) ∪ (CL(ϕ1)× CL(ϕ3σ))

(CL(ϕ2)× CL(ϕ3)) ∪ (CL(ϕ3)× CL(ϕ3σ))

Here, there are several cases to analyze:

i. ψ′ is a projection for χ which goes over ϕ1 and ϕ2. This is the
simplest case as ψ′ is also a projection for ϕ.ν with the same
end-sequent. The extensions to the projections for ϕ′ and ϕ are
as usual.

ii. ψ′ is a projection for χ which goes over ϕ1 and ϕ3σ. Then ψ′ is:

(ψ′1)
~C, P, ∗Γ1 ` ~D

(ψ′3σ)
~Eσ, ∗Γ3σ ` ∗∆σ, ~Fσ

Qσ, ~Eσ, ∗Γ3σ ` ∗∆σ, ~Fσ
w∗l

~C, ~Eσ, P ∨Qσ, ∗Γ1,
∗Γ3σ ` ∗∆σ, ~D, ~Fσ

∨l

Then the following projection ψ for ϕ.ν subsumes ψ′ (more
precisely (ψ,ψ′, σ) is a proof subsumption):

(ψ′3)
~E, ∗Γ3 ` ∗∆, ~F

~E, P ∨Q, ∗Γ1,
∗Γ3 ` ∗∆, ~F

w∗l

Note that dom(σ) ∩ V (P, ∗Γ1) = ∅ as dom(σ) ∩ V (ϕ1) = ∅ and
so ψ subsumes ψσ which in turn subsumes ψ′. We apply both
Lemma 5.1 and Lemma 5.2 to extend the projections to ϕ.
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iii. ψ′ is a projection for χ which goes over ϕ2 and ϕ3σ: analogous
to 1(b)ii.

iv. ψ′ is a projection for χ which goes over ϕ3 and ϕ3σ: analogous
to 1(b)ii.

2. Shifting the cut over →l: Let ϕ.ν:

(ϕ1)
Γ1 ` P

(ϕ2)
Q,Γ2 ` A

P → Q,Γ1,Γ2 ` A
→l

(ϕ3)
A,Γ3 ` ∆

P → Q,Γ1,Γ2,Γ3 ` ∆
cut

Which is transformed to χ:

(ϕ1)
Γ1 ` P

(ϕ2)
Q,Γ2 ` A

(ϕ3)
A,Γ3 ` ∆

Q,Γ2,Γ3 ` ∆
cut

P → Q,Γ1,Γ2,Γ3 ` ∆
→l

We define ϕ′ as ϕ[χ]ν . The clause sets are:

CL(ϕ.ν) = (CL(ϕ1) ? CL(ϕ2)) ∪ CL(ϕ3)

CL(χ) = CL(ϕ1) ? (CL(ϕ2) ? CL(ϕ3))

where ? ∈ {∪,×}, depending on whether P → Q is a cut or end-sequent
ancestor. As before, we analyze both cases:

(a) P → Q is a cut ancestor. In this case, we have:

CL(ϕ.ν) = CL(ϕ1) ∪ CL(ϕ2) ∪ CL(ϕ3)

CL(χ) = CL(ϕ1) ∪ CL(ϕ2) ∪ CL(ϕ3)

Therefore, the clause sets and consequently projections of ϕ and ϕ′

are the same. The theorem holds trivially.

(b) P → Q is an end-sequent ancestor. The normalized clause sets are:

CL(ϕ.ν) = (CL(ϕ1)× CL(ϕ2)) ∪ CL(ϕ3)

CL(χ) = (CL(ϕ1)× CL(ϕ2)) ∪ (CL(ϕ1)× CL(ϕ3))

We need to analyze two cases:

i. ψ′ is a projection for χ that goes over ϕ1 and ϕ2. Analogous to
case 1(b)i, where ψ′ is also a projection for ϕ.ν.

ii. ψ′ is a projection for χ that goes over ϕ1 and ϕ3. Analogous to
case 1(b)ii, where a projection of ϕ.ν going over ϕ3 subsumes ψ′.

3. Shifting the cut over other binary rules: analogous to the previous case.

Cut-simplification rules:
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1. Of a cut on an ∧-formula: Let us assume that ϕ.ν is a cut-derivation of
the form

(ϕ1)
Γ1 ` A

(ϕ2)
Γ2 ` B

Γ1,Γ2 ` A ∧B
∧r

(ϕ3)
A,Γ3 ` ∆

A ∧B,Γ3 ` ∆
∧l

Γ1,Γ2,Γ3 ` ∆
cut

Then ϕ.ν reduces to χ:

(ϕ1)
Γ1 ` A

(ϕ3)
A,Γ3 ` ∆

Γ1,Γ3 ` ∆
cut

Γ1,Γ2,Γ3 ` ∆
w∗l

And we define ϕ′ = ϕ[χ]ν . It is easy to see that every projection of ϕ′

is also a projection of ϕ (due to the fact that CL(ϕ′) ⊆ CL(ϕ)). Indeed,
if the projection ψ′ goes over ϕ1 and weakens material from ϕ3, then we
take the same projection ψ′ in ϕ, “ignore” ϕ2 and do the same weakenings
as in ϕ′.

2. Of a cut on an ∨- and →-formula: analogous to the ∧ case.

3. Of a cut on an ¬-formula: Let us assume that ϕ.ν is a cut-derivation of
the form

(ϕ1)
A,Γ1 `
Γ1 ` ¬A

¬r

(ϕ2)
Γ2 ` A
¬A,Γ2 `

¬l

Γ1,Γ2 `
cut

Then ϕ.ν reduces to χ

(ϕ2)
Γ2 ` A

(ϕ1)
A,Γ1 `

Γ1,Γ2 `
cut

Now consider the proof ϕ′ as ϕ[χ]ν and a projection ψ′ of ϕ′. It is easy
to see that ψ′ is also a projection of ϕ: either the projection does not pass
over the node ν (in which case they are trivially equal), or the projection
goes over ν. But the inferences ¬l and ¬r are unary inferences going
into a cut and thus are dropped in the projections. Therefore also the
projections going over ν are the same in ϕ and ϕ′. In particular we have
CL(ϕ) = CL(ϕ′).

4. Of a cut on an ∃-formula: analogous to the ∀ case which follows.

5. Of a cut on a ∀-formula: Let us assume that ϕ.ν is a cut-derivation of the
form

(ϕ1(α))
Γ1 ` A(α)

Γ1 ` ∀x.A(x)
∀r

(ϕ2)
A(t),Γ2 ` ∆

∀x.A(x),Γ2 ` ∆
∀l

Γ1,Γ2 ` ∆
cut
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Then ϕ.ν reduces to χ

(ϕ1(t))
Γ1 ` A(t)

(ϕ2)
A(t),Γ2 ` ∆

Γ1,Γ2 ` ∆
cut

and ϕ′ = ϕ[χ]ν .
Now, let ψ′ be a projection of ϕ′. If the projection does not go over ν
then it is also a projection of ϕ. If the projection goes over ν in ϕ′ by
coming from ϕ2 (and using weakenings of formulas from Γ1), then this
projection is also a projection in ϕ. The interesting case is when the
projection ψ′ comes from ϕ1(t). We consider ψ′.ν and the corresponding
projection ψ.ν in ϕ. Now, as ψ is a projection, there exists a subsequent
C of es(ψ.ν) and ψ is (ν, C)-linear. Let ϑ = {α ← t}. First of all, it is
easy to see (use the definition of proof subsumption) that (ψ.ν, ψ′.ν, ϑ) is a
proof subsumption and that (due to the regularity of ϕ) the conditions in
Lemma 5.1 are fulfilled and the corresponding proof ϕ′ (as defined in the
lemma) is exactly the projection ψ′. So (ψ,ψ′, ϑ) is a proof subsumption.

6. Of a cut on a contracted formula: Let ϕ.ν =

(ϕ1)
Γ1 ` A

(ϕ2)
A,A,Γ2 ` ∆

A,Γ2 ` ∆
cl

Γ1,Γ2 ` ∆
cut

Then ϕ.ν reduces to χ:

(ϕ1)
Γ1 ` A

(ϕ1σ)
Γ1 ` A

(ϕ2)
A,A,Γ2 ` ∆

A,Γ1,Γ2 ` ∆
cut

Γ1,Γ1,Γ2∆
cut

Γ1,Γ2 ` ∆
c∗l

Now, let ϕ′ = ϕ[χ]ν and let ψ′ be a projection for ϕ′.ν. If ψ′ goes over ϕ1

or ϕ2 then ψ′ is also a projection for ϕ.ν. If ψ′ goes over ϕ1σ (where σ is a
renaming of eigenvariables in ϕ1) then there exists a projection ψ for ϕ.ν
going over ϕ1 such that ψσ = ψ′ and (ψ,ψ′, σ) is a proof subsumption.
The extension to the corresponding projection for ϕ is done via Lemma 5.1.

Theorem 5.2. Let ϕ  ∗Ra ϕ′ and ψ′ be a projection for ϕ′. Then there ex-
ists a projection ψ for ϕ and a substitution ϑ such that (ψ,ψ′, ϑ) is a proof
subsumption.

Proof. By Lemma 5.3 and transitivity of proof subsumption (Proposition 5.1).
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Corollary 5.1. Let ϕ′ be an ACNF of ϕ obtained under Ra. Then for any
projection ψ′ of ϕ′ there exists a projection ψ of ϕ and a substitution ϑ such
that (ψ,ψ′, ϑ) is a proof subsumption.

Proof. By Theorem 5.2.

6. Joining Proofs by Proof Resolution

As we have already noted in Section 3.1, the implementation of a specially de-
signed resolution refinement is not enough for extending CERES to intuitionistic
logic. One issue that cannot be dealt with easily, is the repetition of end-sequent
formulas on the right-hand side of the sequent when computing a context product
(see Definition 3.4). This is expected given the classical nature of the resolution
procedure. One can see how this can occur, especially in first-order logic, when
a single projection is used multiple times with different variable instantiations.
Of course, it is not enough to introduce contractions, given that the original
reason for the structural constraints found in the intuitionistic calculus was to
limit the use of contraction in the first place.

Thus, we are left with the need to choose which of the repeated end-sequent
formulas stay in the proof and which do not. Resolving of cut-free proofs makes
this procedure tractable by allowing every possible way in which the cut-free
proofs can be combined. Proof resolution, which is based on grounded proof res-
olution, is a way of introducing implicit contractions inferences without actually
introducing contraction rules in the proof itself; the contraction is done while
resolving the two proofs together. Note that we need a definition on the general
and not only on the ground level. We are resolving cut-free proofs via atoms
and most general unification, i.e., we have cut-free proofs ϕ of Γ ` ∆, A and ϕ′

of B,Π ` Λ such that A and B are unifiable atoms with most general unifier
(m.g.u.) σ. We then consider the proofs ϕσ and ϕ′σ and combine them via
atomic cut. The stepwise shifting of this cut is needed to define proof resolution
inductively.

Definition 6.1 (Ground proof resolution). Let ϕ and ψ be cut-free proofs
with end sequents Γ ` ∆, Am and An,Π ` Λ, where A is atomic and n,m ≥ 1.
The grounded resolution of ϕ and ψ on (Am, An) is a set of cut-free proofs
denoted by ϕ ./ ψ. Resolutions can be left- or right-resolutions, i.e. ϕ ./ ψ =
ϕ ./l ψ ∪ ϕ ./r ψ. We define ϕ ./l ψ and ϕ ./r ψ inductively as follows:

Base case: When ϕ = A ` A and ψ = A ` A then ϕ ./l ψ = ϕ ./r ψ =
{A ` A} .

Inductive cases: By ϕ ./l ψ we refer to the ground proof resolution of ϕ and
ψ by considering the left branch rule before the right branch rule. By ϕ ./r ψ
we refer to the opposite. We will only define ϕ ./l ψ. The definition of ϕ ./r ψ
is symmetric. Since A is atomic, no logical rules are applied to it.

1. Weakening rule on A:
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If m = 1 then ϕ =
(ϕ′)

Γ ` ∆
Γ ` ∆, A

wr
. In this case,

ϕ ./l ψ =

{
ϕ′

S
w∗

∣∣∣∣ S ⊆ Γ,Π ` ∆,Λ

}
.

If m > 1, then ϕ =

(ϕ′)
Γ ` ∆, Am

Γ ` ∆, Am+1
wr

. In this case, ϕ onl ψ = ϕ′ on ψ.

2. Contraction rule on A:

Let ϕ =

(ϕ′)

Γ ` ∆, Am+1

Γ ` ∆, Am
cr

then ϕ onl ψ = ϕ′ on ψ.

3. Unary logical rule

Let ϕ =

(ϕ′)

Γ′ ` ∆′, Am

Γ ` ∆, Am x
then

ϕ onl ψ =

{
χ

S
w∗, x

∣∣∣∣χ ∈ ϕ′ on ψ ∧ S ⊆ Γ,Π ` ∆,Λ

}
Where the principal formula of x is possibly weakened.

4. Binary logical rule
Unlike the previous cases, there is no general form for binary rules. Thus,
we show only the case for ∧r as an example. The other rules behave in
a similar way, except for the location of the auxiliary formulas within the
sequent.

Let ϕ =

(ϕ1)

Γ1 ` ∆1, P,A
k

(ϕ2)

Γ2 ` ∆2, Q,A
l

Γ1,Γ2 ` ∆1,∆2, P ∧Q,Ak+l
∧r

, then

ϕ onl ψ =


χ1 χ2

S′
∧r

S
c∗, w∗

∣∣∣∣∣∣
χ1 ∈ ϕ1 on ψ ∧
χ2 ∈ ϕ2 on ψ ∧

S ⊆ Γ1,Γ2,Π ` ∆1,∆2,Λ


This case holds iff the end sequent of ϕ1 on ψ and ϕ2 on ψ contain P
and Q, respectively. If one of the formulas is missing, we add a weakening
rule after the respective resolution. If neither formula occurs, then the
resolution is:

ϕ onl ψ =

{
χ

S
w∗

∣∣∣∣ χ ∈ ϕ1 on ψ ∪ ϕ2 on ψ, S ⊆ Γ1,Γ2,Π ` ∆1,∆2,Λ

}
Now, we introduce a (non-ground) resolution principle for cut-free proofs.

While resolution of two projections is not necessarily a projection (to the same
set of clauses), the resolution of cut-free proofs is again a cut-free proof.

34



Definition 6.2 (Proof resolution). Let ϕ be a cut-free proof of Γ ` ∆,
A1, . . . , An and ψ be a cut-free proof of B1, . . . , Bm,Π ` Λ. Let σ be a most gen-
eral unifier of {A1, . . . , An, B1, . . . , Bm}. Then any ground resolution χ ∈ ϕσ ./
ψσ on (Aσn, Bσm) is called a resolvent of ϕ and ψ on (A1, . . . , An, B1, . . . , Bm).
We write ϕ ◦r ψ for ϕσ ./ ψσ.

Note that, in the above definition, we require simultaneous unification of
several atoms (as it is required in factoring of resolution).

Example 6.1. Let ϕ be the following proof with a cut in which the cut-formulas
are labeled with an index:

Py ` Py1 Py ` Py1

Py ∨ Py ` Py1
∨l

∀x.(Px ∨ Px) ` Py1
∀l

∀x.(Px ∨ Px) ` ∀x.Px1
∀r

Pa1 ` Pa
∀x.Px1 ` Pa

∀l Pa1 ` Pa
∀x.Px1 ` Pa

∀l

∀x.Px1, ∀x.Px1 ` Pa ∧ Pa
∧r

∀x.Px1 ` Pa ∧ Pa
cl

∀x.(Px ∨ Px) ` Pa ∧ Pa cut

Its characteristic clause set is:

CL(ϕ) = {` Py1, Py1 ; Pa1, Pa1 `}

And the minimal projections are π1:

Py ` Py1 Py ` Py1

Py ∨ Py ` Py1, Py1
∨l

∀x.(Px ∨ Px) ` Py1, Py1
∀l

and π2:
Pa1 ` Pa Pa1 ` Pa
Pa1, Pa1 ` Pa ∧ Pa

∧r

Note that, as expected, the projections are classical. The projections π1 and π2
contain double occurrences of atoms, so we have to resolve on (Py, Py, Pa, Pa).

A resolvent of π1 and π2 is a proof in π1ϑ ./ π2ϑ for ϑ = {y ← a}. We
construct a proof χ1 in π1ϑ ./ π2ϑ. Let χ1 be:

(χ2) (χ2)

Pa ∨ Pa ` Pa ∧ Pa
∨l

∀x.(Px ∨ Px) ` Pa ∧ Pa
∀l

For χ2 ∈ Pa ` Pa1 ./ π2. It remains to define χ2:

(χ3) (χ3)

Pa, Pa ` Pa ∧ Pa
∧r

Pa ` Pa ∧ Pa
cl

for χ3 ∈ Pa ` Pa1 ./ Pa1 ` Pa. But Pa ` Pa1 ./ Pa1 ` Pa = {Pa ` Pa}
and χ3 = Pa ` Pa. It is easy to see that χ1 ∈ π1 ◦r π2 is an intuitionistic proof
which can be obtained via cut-elimination on ϕ.

35



Note that proof resolution has an interesting side-effect. Resolving pro-
jections with end-sequents Cσ,Γσ ` ∆σ,Dσ,Aσ and Aσ,Eσ,Πσ ` Λσ, Fσ in
general gives a proof of C ′σ,E′σ,Γ′σ,Π′σ ` ∆′σ,Λ′σ,D′σ, F ′σ, where C ′, E′ `
D′, F ′ is (possibly a proper) subsequent of C,E ` D,F (due to redundant
branches where the atoms to be resolved do not occur). So the clause part of
the proof resolution does not always coincide with a resolvent R of the clauses
C ` D,A and B,E ` F , but it subsumes R.

Lemma 6.1. Let ϕ,ψ be cut-free proofs and (ϕ,ψ, ϑ) a proof subsumption such
that es(ψ) = Γ ` ∆, Am for an atom A and m ≥ 1, and es(ϕ)ϑ ⊆ Γ ` ∆.
Let χ be an A-resolution of ψ and a cut-free proof ρ. Then (ϕ, χ, ϑ) is a proof
subsumption.

Proof. It is easy to show that this subsumption relation is invariant under
ground resolution rules. The formal proof is by induction on the heights of
ψ and ρ. We consider only the more complicated cases. Let ρ be a proof of
Ak,Π ` Λ.

Base case: Both ψ and ρ have height 1. Then they are both:

A ` A

and the proof resolution χ is A ` A. In this case, es(ϕ)ϑ ⊆ Γ ` ∆ would mean
es(ϕ) = A′ ` for an atom A′ which is impossible as A′ ` is not provable in LK.
So the theorem is trivially true (if A′ ` were provable, then ϕ would subsume
χ anyway).

Inductive cases: We give a proof for a left-resolution via ∧r; all other cases
are similar.

1. Let Γ ` ∆ = Γ1,Γ2 ` ∆1,∆2, B ∧ C and χ be a (left-) resolution of

(ψ1)
Γ1 ` ∆1, B,A

m1

(ψ2)
Γ2 ` ∆2, C,A

m2

Γ1,Γ2 ` ∆1,∆2, B ∧ C,Am ∧r
and

(ρ)

Ak,Π ` Λ

Then, by definition, χ is of the form

(χ1) (χ2)

S′
∧r

S
s∗

where

χ1 ∈
(ψ1)

Γ1 ` ∆1, B,A
m1 on

(ρ)

Ak,Π ` Λ,

χ2 ∈
(ψ2)

Γ2 ` ∆2, C,A
m2 on

(ρ)

Ak,Π ` Λ.

we distinguish 3 cases:
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(a) es(ϕ)ϑ ⊆ Γ1 ` ∆1. Then we can apply the induction hypothesis
and (ϕ, χ1, ϑ) is a proof subsumption. Then by definition of proof
subsumption also (ϕ, χ, ϑ) is a proof subsumption.

(b) 1a does not hold but es(ϕ)ϑ ⊆ Γ2 ` ∆2. Analogous to 1a and (ϕ, χ2, ϑ)
is a proof subsumption; by definition of proof subsumption (ϕ, χ, ϑ)
is a proof subsumption as well.

(c) Neither 1a nor 1b holds. Then by the conditions on ϕ and by the
definition of proof subsumption ϕ is of the form

(ϕ1)

Γ′1 ` ∆′1, B
′

(ϕ2)

Γ′2 ` ∆′2, C
′

Γ′1,Γ
′
2 ` ∆′1,∆

′
2, B

′ ∧ C′
∧r

such that (ϕ1, ψ1, ϑ) and (ϕ2, ψ2, ϑ) are proof subsumptions. By in-
duction hypothesis (ϕ1, χ1, ϑ) and (ϕ2, χ2, ϑ) are also proof subsump-
tions. By definition of proof subsumption, we get that (ϕ, χ, ϑ) is a
proof subsumption as well.

2. All cases of right-resolution (via the proof ρ) are simpler.

Lemma 6.2. Let ϕ,ψ be cut-free proofs and (ϕ,ψ, ϑ) a proof subsumption such
that es(ψ) = Am,Γ ` ∆ for an atom A and m ≥ 1, and es(ϕ)ϑ ⊆ Γ ` ∆.
Let χ be an A-resolution of ψ and a cut-free proof ρ. Then (ϕ, χ, ϑ) is a proof
subsumption.

Proof. As for Lemma 6.1.

Lemma 6.3. Let (ϕ,ϕ′, η) and (ψ,ψ′, η) be proof subsumptions among cut-free
proofs such that ϕ is a proof of Γ ` ∆, Am and ψ is a proof of Ak,Π ` Λ where A
is an atom and m, k ≥ 1. Let es(ϕ′) = Γ′ ` ∆′, (Aη)p and es(ψ′) = (Aη)q,Π′ `
Λ′ such that Γη ⊆ Γ′, ∆η ⊆ ∆′, Πη ⊆ Π′, Λη ⊆ Λ′ and p ≥ m, q ≥ k. Let χ′

be a ground proof resolution of ϕ′ and ψ′ on (Aηp, Aηq). Then there exists a
ground proof resolution χ of ϕ and ψ on (Am, Ak) such that (χ, χ′, η) is a proof
subsumption.

Proof. We can assume that es(ϕ′) = Γ′ ` ∆′, Bp, es(ψ′) = Bq,Π′ ` Λ′ for
B = Aη. We consider a χ′ ∈ ϕ′ on ψ′ on (Bp, Bq). The proof is by induction on
the heights of ϕ′ and ψ′.

Base case: Both ϕ′ and ψ′ have height 1. Then they are both

B ` B

The only ground proof resolution of ϕ′ and ψ′ is B ` B. In this case ϕ =

A ` A and ψ = A ` A and their ground proof resolution is A ` A. Clearly

(A ` A,B ` B, η) is a proof subsumption.
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Induction hypothesis: Assume the lemma holds for ϕ′ and ψ′ with heights h
and i such that h+ i ≤ n.

Inductive cases: We consider only the ground proof resolutions via rank re-
duction in ϕ′ (left-resolution), the other cases are analogous. In particular, we
assume that the number of nodes in ϕ′ is greater than 1.

• The last rule in ϕ′ is a unary rule x.

We distinguish two cases:

1. The principal formula of x is not in Bp: then ϕ′ =

(ϕ′1)

Γ′ ` ∆′, Bp

Γ′′ ` ∆′′, Bp
x

Let χ′ ∈ ϕ′ on ψ′ via x. Then there exists a χ′1 ∈ ϕ′1 on ψ′ such that
χ′ =

(χ′1)
Γ∗,Π∗ ` ∆∗,Λ∗

Γ∗1,Π
∗ ` ∆∗1,Λ

∗ x

S
s∗

where Γ∗,Π∗ ` ∆∗,Λ∗ is a subsequent of Γ′,Π′ ` ∆′,Λ′ and the
auxiliary formula of x is in Γ∗ ` ∆∗. The inferences s∗ are a se-
quence of constractions followed by a sequence of weakenings. S is
a subsequent of Γ′′,Π′ ` ∆′′,Λ′. If the auxiliary formula is not in
Γ∗ ` ∆∗, then χ′1 is only followed by contractions and weakenings.

We know that (ϕ,ϕ′, η) is a proof subsumption. If es(ϕ)η does not
contain the principal formula of x, then, by definition of proof sub-
sumption, (ϕ,ϕ′1, η) is a proof subsumption. By (IH), there exists a
χ ∈ ϕ on ψ such that (χ, χ′1, η) is a proof subsumption. But also the
end-sequent of χη cannot contain the auxiliary formula of x and so
(χ, χ′, η) is a proof subsumption as well.

If the principal formula of x is in es(ϕ)η, then, by definition of proof
subsumption, ϕ =

(ϕ1)
Γ1 ` ∆1, A

m

Γ ` ∆, Am x

and (ϕ1, ϕ
′
1, η) is a proof subsumption. By (IH), there exists a proof

χ1 ∈ ϕ1 on ψ such that (χ1, χ
′
1, η) is a proof subsumption. We assume

that χ1 is maximally contracted (i.e. all possible contractions admit-
ted in a ground proof resolution are carried out). We distinguish the
following cases:

(a) The rule x has (exactly) one auxiliary formula F in Γ1 ` ∆1.
If F 6∈ es(χ1), then (χ1, χ

′, η) is a proof subsumption and, by
definition of ground proof resolution, χ1 ∈ ϕ on ψ.
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If F ∈ es(χ1), we define χ =

(χ1)
Γ1,Π1 ` ∆1,Λ1

Γ∗1,Π1 ` ∆∗1,Λ1

x

Then χ ∈ ϕ on ψ and (χ, χ′, η) is a proof subsumption. Note
that, as χ1 is maximally contracted, it can cope with the con-
tractions in χ′.

(b) x is →r.
Let F1, F2 be the auxilary formulas of x in ϕ′. If none of F1, F2

are in es(χ1)η, then also (χ1, χ
′, η) is a proof subsumption and

χ1 ∈ ϕ on ψ.

If both F1, F2 are in es(χ1)η, then we define χ =

(χ1)

Γ1,Π1, F
0
1 ` ∆1,Λ1, F

0
2

Γ1,Π1 ` ∆1,Λ1, F
0
1 → F 0

2

→r

where F 0
1 η = F1 and F 0

2 η = F2.
Then (χ, χ′, η) is a proof subsumption and χ ∈ ϕ on ψ.

In case just one of the formulas F1, F2 is in es(χ1), we adjust
χ1 by producing the other one by weakening (which is admit-
ted in ground proof resolutions) and define χ by applying →r

afterwards. Then, again, (χ, χ′, η) is a proof subsumption and
χ ∈ ϕ on ψ.

(c) x is cl:
Let F be the contracted formula in ϕ′, i.e. F, F ∈ Γ′. If none
or just one of these F ’s is in es(χ1)η then (χ1, χ

′, η) is a proof
subsumption and χ1 ∈ ϕ on ψ.

So we consider the case where both F ’s are in es(χ1)η. Let F0

be the contracted formula in ϕ and F0η = F . Then we define
χ =

(χ1)
F0, F0,Γ1,Π1 ` ∆1,Λ1

F0,Γ1,Π1 ` ∆1,Λ1

cl

Then (χ, χ′, η) is a proof subsumption and χ ∈ ϕ on ψ.

(d) x is cr: analogous to cl.

(e) x is weakening: trivial.

2. The principal formula of x is in Bp. Then, as B is an atom, the only
possible rules are cr and wr.
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(a) x = cr. Then ϕ′ =
(ϕ′1)

Γ′ ` ∆′, Bp+1

Γ′ ` ∆′, Bp
cr

Then ϕ′ onl ψ′ = ϕ′1 onl ψ′ (the left proof resolution on (Bp, Bq),
the right one on (Bp+1, Bq)). The result follows directly from
(IH).

(b) x = wr. We distinguish two cases: p = 1. Then ϕ′ =

(ϕ′1)

Γ′ ` ∆′

Γ′ ` ∆′, B
wr

Then χ′ is ϕ′1 (possibly) followed by some weakenings, resulting
in a proof of Γ′,Π′′ ` ∆′,Λ′′ ( a subsequent of Γ′,∆′ ` ∆′,Λ′).
Then either (ϕ,ϕ′1, η) is a proof subsumption, in which case
(ϕ, χ′, η) is a proof subsumption and ϕ ∈ ϕ on ψ. If (ϕ,ϕ′1, η) is
not a proof subsumption then ϕ =

(ϕ1)
Γ ` ∆

Γ ` ∆, A
wr

Then, by definition of ground proof resolution, ϕ1 ∈ ϕ on ψ and
(ϕ1, χ

′, η) is a proof subsumption. If p > 1 the argument is the
same as for cr.

• The last inference in ϕ′ is a binary rule: We choose the rule ∨l; the
arguments for the other binary rules are analogous. Moreover, we only
consider left-resolution (the case of right-resolution is symmetric). so let
ϕ′ =

(ϕ′1)

C,Γ′1 ` ∆,∆′1, B
p1

(ϕ′2)

D,Γ′2 ` ∆,∆′2, B
p2

C ∨D,Γ′1,Γ′2 ` ∆,∆′1,∆
′
2, B

p
∨l

where p1 + p2 = p and C ∨D,Γ′1,Γ′2 ` ∆,∆′1,∆
′
2, B

p = Γ′ ` ∆′, Bp.

Now, we consider χ′ ∈ ϕ′ onl ψ′. Then there exist proofs π1, π2 such that

π1 ∈
(ϕ′1)

C,Γ′1 ` ∆,∆′1, B
p1 on

(ψ′)

Bq,Π′ ` Λ′

π2 ∈
(ϕ′2)

D,Γ′2 ` ∆,∆′2, B
p2 on

(ψ′)

Bq,Π′ ` Λ′

and χ′ =

(π1)

C,Γ′′1 ,Π
′′ ` ∆,∆′′1 ,Λ

′′
(π2)

D,Γ′′2 ,Π
∗ ` ∆,∆′′2 ,Λ

∗

C ∨D,Γ′′,Π′′,Π∗ ` ∆,∆′′1 ,∆
′′
2 ,Λ

′′,Λ∗
∨l

S′
s∗
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where s∗ is a sequence of weakenings and contractions.

We know that (ϕ,ϕ′, η) is a proof subsumption. We distinguish several
cases:

1. es(ϕ)η ⊆ Γ′1,Γ
′
2 ` ∆,∆′1,∆

′
2, B

p.
Then, by Definition 5.3, either (ϕ∗, ϕ′1, η) or (ϕ∗, ϕ′2, η) for some ϕ∗

such that ϕ =
ϕ∗

S0

S
w∗

is a proof subsumption. We consider the case that (ϕ∗, ϕ′1, η) is a
proof subsumption, the other case is symmetric.

Now consider the ground proof resolution π1. By (IH), there exists a
χ ∈ ϕ∗ on ψ such that (χ, π1, η) is a proof subsumption. In particular,
we obtain

es(χ)η ⊆ Γ′′1 ,Π
′′ ` ∆,∆′′1 ,Λ

′′.

and so (χ, χ′, η) is a proof subsumption as well. But we also have
χ ∈ ϕ on ψ, by definition of ground proof resolution over weakenings.

2. C ∨D ∈ es(ϕη).
Then, by Definition 5.3, the last rule in ϕ must be ∨l. There are
several cases to consider:

(a) C occurs in a premise of ∨l and D does not,

(b) D occurs in a premise of ∨l and C does not,

(c) both C and D occur in the premises of ∨l.
In case 2a or 2b the missing auxiliary formula is added by weakening
in order to perform ∨l; otherwise the form of ϕ is like in case 2c.
Thus, we consider case 2c only. In this case, ϕ =

(ϕ1)
C0,Γ1 ` ∆0,∆1, A

m1

(ϕ2)
D0,Γ2 ` ∆0,∆2, A

m2

C0 ∨ C0,Γ1,Γ2 ` ∆0,∆1,∆2, A
m ∨l

where m1 +m2 = m, ∆0η ⊆ ∆, C0η = C, D0η = D and (ϕ1, ϕ
′
1, η),

(ϕ2, ϕ
′
2, η) are both proof subsumptions.

By (IH), there exist ground proof resolutions χ1 ∈ ϕ1 on ψ and
χ2 ∈ ϕ2 on ψ such that

(χ1, π1, η) and (χ2, π2, η) are proof subsumptions.

We define χ as

(χ1)

C0,Γ
+
1 ,Π

+ ` ∆0,∆
+
1 ,Λ

+

(χ2)

D0,Γ
+
2 ,Π

? ` ∆0,∆
+
2 ,Λ

?

C0 ∨D0,Γ
+
1 ,Γ

+
2 ,Π

+,Π? ` ∆0,∆
+
1 ,∆

+
2 ,Λ

+,Λ?
∨l

S
c∗
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where c∗ is a maximal sequence of contractions (i.e. no further con-
tractions are applicable to S). Then χ ∈ ϕ on ψ and, by Definition 5.3
(binary case), (χ, χ′, η) is a proof subsumption.

Theorem 6.1 (Lifting theorem for proofs). Let (ϕ,ϕ′, ϑ1) and (ψ,ψ′, ϑ2) be
proof subsumptions for cut-free proofs which are variable-disjoint. Let χ′ be a
ground proof resolution of ϕ′ and ψ′. Then either

• (ϕ, χ′, ϑ1) is a proof subsumption or

• (ψ, χ′, ϑ2) is a proof subsumption or

• There exists a resolvent χ of ϕ and ψ and a substitution σ such that
(χ, χ′, σ) is a proof subsumption.

Proof. Let es(ϕ′) = Γ ` ∆, Am and es(ψ′) = An,Π ` Λ and χ′ be an A-
resolution of ϕ′ and ψ′. We distinguish the following cases:

(a) es(ϕ)ϑ1 ⊆ Γ ` ∆. Then (ϕ, χ′, ϑ1) is a proof subsumption by Lemma 6.1.

(b) es(ψ)ϑ2 ⊆ Π ` Λ. Then (ψ, χ′, ϑ2) is a proof subsumption by Lemma 6.2.

(c) es(ϕ)ϑ1 6⊆ Γ ` ∆ and es(ψ)ϑ2 6⊆ Π ` Λ. As ϕ,ψ are variable-disjoint,
there exists a substitution ϑ such that (ϕ,ϕ′, ϑ) and (ψ,ψ′, ϑ) are proof
subsumptions. In this case, ϕ must be a proof of Γ0 ` ∆0, A1, . . . , Ak, ψ a
proof of B1, . . . , Bl,Π0 ` Λ0 such that 1 ≤ k ≤ m, 1 ≤ l ≤ n, and

Γ0ϑ ⊆ Γ, ∆0ϑ ⊆ ∆, A1ϑ = . . . , Akϑ = A,
Π0ϑ ⊆ Π, Λ0ϑ ⊆ Λ and B1ϑ = . . . Blϑ = A.

Therefore, ϑ is a unifier of {A1, . . . , Ak, B1, . . . , Bl} and there exists a most
general unifier λ of this set; hence, there exists a substitution σ such that
λσ = ϑ. Let {B} = {A1, . . . , Ak, B1, . . . , Bl}λ.

Then ϕλ is a proof of Γ0λ ` ∆0λ,B
k, ψλ is a proof of Bl,Π0λ ` Λ0λ and

(ϕλ, ϕ′, σ), (ψλ, ψ′, σ) are proof subsumptions.

Now, let χ′ be a ground proof resolution of ϕ′ and ψ′. Then, by Lemma 6.3,
there exists a ground proof resolution χ of ϕλ and ψλ such that (χ, χ′, σ)
is a proof subsumption. By Definition 6.2, χ is a resolvent of ϕ and ψ.

This result guarantees that the resolution of the projections of the ACNFtop-
normal forms can be “lifted” to the original proof.

42



7. Ground Completeness

In the previous section, we have introduced the notion of ground proof res-
olution, which combines two cut-free proofs via elimination of certain atoms
using proof resolution. Towards our initial goal, namely the completeness of
CERES for intuitionistic logic, we will first prove—as an intermediary step—the
completeness of the proof resolution procedure on the ground level by consider-
ing proofs in ACNFtop enriched by indices. These indices serve the purpose of
keeping track of atoms that originate from the same cut in the original LJ-proof.
Moreover, we will restrict the resolution of two projections on the ground level
in such a way that the atoms upon which we perform the resolution must have
the same index.

First, we introduce a special kind of ACNFtop on which the completeness
proof relies.

Definition 7.1 (Chain of Atomic Cuts). We inductively define a chain of
atomic cuts as follows:
The base case is given by

A ` Ai Ai ` A
A ` A

cut ,

where A is an atom and i ∈ N. We refer to this case as a trivial chain of atomic
cuts.

Assume that σ1 and σ2 are chains of atomic cuts with end-sequents A ` Aj and
Aj ` A, respectively. Then

(σ1)

A ` Aj

(σ2)

Aj ` A
A ` A cut

is a chain of atomic cuts.

Let ϕ be an ACNFtop, then we say that ϕ is a proof with nontrivial chains
of atomic cuts if ϕ contains nontrivial chains of atomic cuts at the top.

In order to simplify the completeness proof, we will consider the following
special forms of projections obtained from an ACNFtop.

Definition 7.2 (ACNFtop-projection). Let ψ be an ACNFtop of an LJ-proof
ϕ. Then we define, for each C = Π ` Λ ∈ CL(ψ), its projection ψ[C] as follows:

(a) For ψ[Π′ ` Λ′, Di], replace

D ` Di Di ` D
D ` D cut in ψ by

D ` Di

D ` Di, D
wr.

(b) For ψ[Di,Π′ ` Λ′], replace

D ` Di Di ` D
D ` D cut in ψ by

Di ` D
D,Di ` D

wl.
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(c) For ψ[Π′ ` Λ′, Di], replace

D ` Di Di ` Dj

D ` Dj
cut in ψ by

D ` Di

D ` Di, Dj
wr

D ` Di, Dj , D
wr
.

(d) For ψ[Di,Π′ ` Λ′, Dj ], replace

D ` Di Di ` Dj

D ` Dj
cut in ψ by

Di ` Dj

D,Di ` Dj
wl

D,Di ` Dj , D
wr
.

(e) For ψ[Di,Π′ ` Λ′, Dj ], replace

Di ` Dj Dj ` Dl

Di ` Dl
cut in ψ by

Di ` Dj

Di ` Dj , Dl
wr

Di ` Dj , Dl, D
wr

D,Di ` Dj , Dl, D
wl

.

(f) For ψ[Dj ,Π′ ` Λ′, Dl], replace

Di ` Dj Dj ` Dl

Di ` Dl
cut in ψ by

Dj ` Dl

Di, Dj ` Dl
wl

Di, Dj ` Dl, D
wr

D,Di, Dj ` Dl, D
wl

.

(g) For ψ[Di,Π′ ` Λ′, Dj ], replace

Di ` Dj Dj ` D
Di ` D

cut in ψ by

Di ` Dj

Di ` Dj , D
wr

D,Di ` Dj , D
wl
.

(h) For ψ[Dj ,Π′ ` Λ′], replace

Di ` Dj Dj ` D
Di ` D

cut in ψ by

Dj ` D
Di, Dj ` D

wl

D,Di, Dj ` D
wl
.

As all inferences below the atomic cuts in ψ do not operate on cut ancestors,
we include all of them in the projections. Clearly, ψ[C] is then a proof of
Γ,Γind ` ∆ind,∆, where Γind and ∆ind solely contain indexed atoms.

Note that it is possible for two different atomic cuts within an ACNFtop to
have cut-formulas with the same index.

The following two lemmas will give us a constructive method for resolving
two ACNFtop-projections that only differ on the position of a specific indexed
atom.
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Lemma 7.1. Let ψ be an ACNFtop of an LJ-proof ϕ (without nontrivial chains
of atomic cuts) and let ψ′ be a proof obtained from ψ by eliminating an upper-
most atomic cut. Then for all C ∈ CL(ψ′) there are C1, C2 ∈ CL(ψ) such that
ψ′[C] ∈ ψ[C1] ./ ψ[C2].

Proof. For a proof in ACNFtop, for each cut-formula Ai, there are C1, C2 ∈
CL(ψ) such that C1 = Γind ` ∆ind, A

i and C2 = Ai,Γind ` ∆ind, where Γind and
∆ind are possibly empty multisets of indexed atoms.

Thus, let C := Γind ` ∆ind, i.e. C ∈ CL(ψ′), by definition of CL and
ACNFtop. Then, by definition of ACNFtop projections, there is a branch going
from the end-sequent to the axiom containing the atom Ai such that ψ[C1] and
ψ[C2] only differ on the position of Ai in this branch. This means, ψ[C1] and
ψ[C2] are, without loss of generality, of the following forms

A ` Ai

A ` Ai, A
wr

other axioms
....

Γ,Γind ` ∆ind,∆, A
i

and

Ai ` A
A,Ai ` A

wl
other axioms

....
Ai,Γ,Γind ` ∆ind,∆

Since these two proofs are projections of the same proof, they only differ in
the position of the indexed atom Ai. Thus, we can construct an LJ-proof
χ ∈ ψ[C1] ./ ψ[C2] as follows:

1. Select either ψ[C1] or ψ[C2] and go to step 2.

2. Omit both the uppermost axiom together with the uppermost application
of weakening in the chosen projection.

3. Omit all occurrences of Ai in the chosen projection and leave the other
inferences unchanged.

The result of this procedure is a proof χ of the following form

A ` A other axioms....
Γ,Γind ` ∆ind,∆

which, by definition of ACNFtop, corresponds to the projection of ψ′ to C =
Γind ` ∆ind. Hence, χ = ψ′[C] ∈ ψ[C1] ./ ψ[C2].

Lemma 7.2. Let ψ be an ACNFtop of an LJ-proof ϕ, and let ψ′ be a proof
obtained from ψ by eliminating an uppermost atomic cut. Then for all C ∈
CL[ψ′] there are C1, C2 ∈ CL(ψ) such that ψ′[C] ∈ ψ[C1] ./ ψ[C2].

Proof. If ψ does not contain nontrivial chains of atomic cuts, then the result
follows from Lemma 7.1. Thus, for the remaining part of the proof, we assume
that ψ contains nontrivial chains of atomic cuts. We distinguish cases according
to the structure of the uppermost cut:

1. (Definition 7.2, cases c & d)

D ` Di Di ` Dj

D ` Dj
cut
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In this case, there are C1, C2 ∈ CL(ψ) such that C1 = Γind ` ∆ind, D
i and

C2 = Di,Γind ` ∆ind, D
j , where Γind,∆ind are possibly empty multisets

of indexed atoms. Thus, let C := Γind ` ∆ind, D
j , and observe that C ∈

CL(ψ′), by definition of CL and ACNFtop. Consequently, by definition of
ACNFtop projections, the corresponding projections ψ[C1] and ψ[C2] are,
without loss of generality, of the following forms

D ` Di

D ` Di, Dj
wr

D ` Di, Dj , D
wr

other axioms
....

Γ,Γind ` ∆ind,∆, D
i, Dj

Di ` Dj

D,Di ` Dj
wl

D,Di ` Dj , D
wr

other axioms
....

Di,Γ,Γind ` ∆ind,∆, D
j

Since both of these proofs are projections of the same proof, they only
differ on a branch that starts in the end-sequent and ends in the axioms
D ` Di and Di ` Dj , respectively. The respective branches in these two
projections only differ in the position of the indexed atom Di and on the
uppermost inference.
Hence, we can construct an LJ-proof χ ∈ ψ[C1] ./ ψ[C2] as follows:
(a) Select either ψ[C1] or ψ[C2] and go to step 2.
(b) Omit both the uppermost axiom together with the uppermost appli-

cation of weakening in the chosen projection.
(c) Omit all occurrences of Di in the chosen projection and leave the

other inferences unchanged.
The result of this procedure is a proof χ of the following form

D ` Dj

D ` Dj , D
wr

other axioms
....

Γ,Γind ` ∆ind,∆, D
j

which, by definition of ACNFtop, corresponds to the projection of ψ′ to
C = Γind ` ∆ind, D

j .
Hence, χ = ψ′[C] ∈ ψ[C1] ./ ψ[C2].

2. (Definition 7.2, cases e & f)

Di ` Dj Dj ` Dl

Di ` Dl
cut

Analogous to Case 1, we have C1, C2 ∈ CL(ψ) such that C1 = Di,Γind `
∆ind, D

j and C2 = Dj ,Γind ` ∆ind, D
l as well as C := Di,Γind ` ∆ind, D

l.
The corresponding projections ψ[C1] and ψ[C2] are of the following forms

Di ` Dj

Di ` Dj , Dl
wr

Di ` Dj , Dl, D
wr

D,Di ` Dj , Dl, D
wl

other axioms
....

Di,Γ,Γind ` ∆ind,∆, D
j , Dl

Dj ` Dl

Di, Dj ` Dl
wl

Di, Dj ` Dl, D
wr

D,Di, Dj ` Dl, D
wl

other axioms
....

Di, Dj ,Γ,Γind ` ∆ind,∆, D
l
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Applying steps (a)–(c) of the above procedure yields, in this case, a proof
χ of the following form

Di ` Dl

Di ` Dl, D
wr

D,Di ` Dl, D
wl

other axioms
....

Di,Γ,Γind ` ∆ind,∆, D
l

which, by definition of ACNFtop, corresponds to the projection of ψ′ to
C = Di,Γind ` ∆ind, D

l.
Hence, χ = ψ′[C] ∈ ψ[C1] ./ ψ[C2].

3. (Definition 7.2, cases g & h)

Di ` Dj Dj ` D
Di ` D

cut

Analogous to Cases 1 and 2, we have C1, C2 ∈ CL(ψ) such that C1 =
Di,Γind ` ∆ind, D

j and C2 = Dj ,Γind ` ∆ind as well as C := Di,Γind `
∆ind. The projections ψ[C1] and ψ[C2] are of the following forms

Di ` Dj

Di ` Dj , D
wr

D,Di ` Dj , D
wl

other axioms
....

Di,Γ,Γind ` ∆ind,∆, D
j

Dj ` D
Di, Dj ` D

wl

D,Di, Dj ` D
wl

other axioms
....

Di, Dj ,Γ,Γind ` ∆ind,∆

Applying steps (a)–(c) of the above procedure yields, in this case, a proof
χ of the following form

Di ` D
D,Di ` D

wl
other axioms

....
Di,Γ,Γind ` ∆ind,∆

which, by definition of ACNFtop, corresponds to the projection of ψ′ to
C = Di,Γind ` ∆ind.
Hence, χ = ψ′[C] ∈ ψ[C1] ./ ψ[C2].

Definition 7.3. Let ψ be an ACNFtop of an LJ-proof ϕ and let ψ′ be obtained
from ψ by eliminating a single atomic cut with cut-formula Ai. Then we write
P(ψ)⇒./ P(ψ′) if for each C ′ ∈ CL(ψ′) we have that there are C1, C2 ∈ CL(ψ)
with ψ′[C ′] ∈ ψ[C1] ./ ψ[C2] such that ψ[C1] and ψ[C2] were resolved upon Ai.

The following theorem states that the projections of the clause set after
every cut-elimination step performed on a proof in ACNFtop can be obtained
by simply resolving the previous projections using the methods established in
Lemmas 7.1 and 7.2.
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Theorem 7.1. Let ψ be an ACNFtop of an LJ-proof ϕ. Then proof resolution
yields the projections of each CL(ψi), where ψi+1 is obtained from ψi by elimi-
nating an uppermost atomic cut, i.e. P(ψ)⇒./ P(ψ1)⇒./ . . .⇒./ {ψ∗[`]}.

Proof. We proceed by induction on the number n of atomic cuts in ψ.

Base case: n = 0. In this case, ψ is an LJ-proof and CL(ψ) = {`}. The only
projection of ψ is ψ[`] where ψ[`] = ψ.

Induction Hypothesis (IH): Assume the claim holds for all ACNFtop’s ψ of
ϕ containing k atomic cuts, for k ≤ n.

Induction Step: Let ψ be an ACNFtop (of an LJ-proof ϕ) containing n + 1

atomic cuts. Furthermore, let ψ1 be a proof obtained by reductively eliminating
an uppermost atomic cut with cut-formula Aij , for ij ∈ {i1, . . . , in+1}, from ψ.
Now, let ψ1[C] be an arbitrary projection in P(ψ1). Thus, by Lemma 7.2, there
are ψ[C1], ψ[C2] ∈ P(ψ) such that ψ1[C] ∈ ψ[C1] ./ ψ[C2]. Therefore,

P(ψ)⇒./ P(ψ1).

Moreover, since ψ1 contains less than n + 1 atomic cuts, we can apply the
(IH) to obtain that P(ψ1) ⇒./ P(ψ2) ⇒./ . . . ⇒./ {ψ∗[`]}. Putting things
together, we obtain P(ψ)⇒./ P(ψ1)⇒./ . . .⇒./ {ψ∗[`]}.

Now, we are able to prove the main result of this section, i.e. that proof-
resolving all projections arising from the characteristic clause set of an LJ-proof
in ACNFtop eventually yields a cut-free LJ-proof of the same end-sequent.

Theorem 7.2. Let ψ be an ACNFtop of an LJ-proof ϕ of Γ ` ∆. Then resolving
the projections in P(ψ)—guided by the corresponding resolution refutations—
yields a cut-free LJ-proof of Γ ` ∆.

Proof. Immediate consequence of Theorem 7.1 together with the fact that the
only possible projection of {`} does not contain any indexed atoms. This di-
rectly implies that ψ∗[`] is a cut-free LJ-proof of Γ ` ∆.

8. The method CERES-i

Given a skolemized LJ-proof ϕ (i.e. an intuitionistic proof without strong
quantifier inferences), we proceed as follows:

(1) Compute the set of all proof projections P(ϕ).

(2) Apply proof resolution until a cut-free intuitionistic proof is reached.

Steps (1) and (2) characterize the roughest form of CERES-i, without any refine-
ment to reduce proof search. We show first that CERES-i is complete and discuss
further refinements afterwards.
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Theorem 8.1 (CERES-i completeness). Let ϕ be an LJ-proof of a skolemized
end-sequent S. Then the application of CERES-i to ϕ yields a cut-free LJ-proof
χ of S.

Proof. Consider an ACNFtop (Definition 4.4) ϕ∗ of ϕ. By definition, ϕ∗ is an
LJ-proof of S. By Theorem 7.2, there exists a proof resolution of the projections
P(ϕ∗) yielding a cut-free LJ-proof ψ. By Theorem 5.2, all projections in P(ϕ∗)
are subsumed by the projections in P(ϕ). By Lemma 6.1, there exists a proof
resolution of P(ϕ) resulting in a proof χ that subsumes ψ, the proof resolution
of P(ϕ∗). Since we know that ψ is an LJ-proof, then, by Theorem 5.1, so is
χ.

Example 8.1. Consider the proof ϕ =

Px1 ` Px
Px1,¬Px `

¬l

Px1,¬Px ` Qx
wr

Qx ` Qx2

Px,Qx ` Qx2
wl

Px1,¬Px ∨Qx ` Qx2
∨l

Px1, ∀y.(¬Py ∨Qy) ` Qx2
∀l

∀y.(¬Py ∨Qy) ` (Px1 → Qx2)
→r

∀y.(¬Py ∨Qy) ` ∀y.(Py1 → Qy2)
∀r

Pa ` Pa1
Qa2 ` Qa
Qa2,¬Qa `

¬l

Pa,¬Qa, (Pa1 → Qa2) `
→l

¬Qa, (Pa1 → Qa2) ` ¬Pa
¬r

(Pa1 → Qa2) ` ¬Qa→ ¬Pa
→r

∀y.(Py1 → Qy2) ` ¬Qa→ ¬Pa
∀l

∀y.(¬Py ∨Qy) ` ¬Qa→ ¬Pa
cut

Consider the indexed characteristic clause set below:

CL(ϕ) = {Px1 ` Qx2; ` Pa1; Qa2 `}.

We have the following indexed resolution refutation:

` Pa1 Px1 ` Qx2

` Qa2 Qa2 `
`

and the following minimal projections:

ϕ[` Pa1] ϕ[Px1 ` Qx2] ϕ[Qa2 `]

Pa ` Pa1

¬Qa, Pa ` Pa1
wl

¬Qa ` Pa1,¬Pa
¬r

` Pa1,¬Qa→ ¬Pa
→r

Px1 ` Px
Px1,¬Px `

¬l
Qx ` Qx2

Px1,¬Px ∨Qx ` Qx2
∨l

Px1,∀y(¬Py ∨Qy) ` Qx2
∀l

Qa2 ` Qa
Qa2,¬Qa `

¬l

Pa,Qa2,¬Qa `
wl

Qa2,¬Qa ` ¬Pa
¬r

Qa2 ` ¬Qa→ ¬Pa
→r
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Now, we consider an ACNFtop ψ of the proof ϕ:

Pa ` Pa1 Pa1 ` Pa
Pa ` Pa cut

Pa,¬Pa `
¬l

Pa,¬Pa ` Qa
wr

Qa ` Qa2 Qa2 ` Qa
Qa ` Qa cut

Pa,¬Pa ∨Qa ` Qa
∨l

Pa,∀y(¬Py ∨Qy) ` Qa
∀l

Pa,¬Qa,∀y(¬Py ∨Qy) `
¬l

∀y(¬Py ∨Qy),¬Qa ` ¬Pa
¬r

∀y(¬Py ∨Qy) ` ¬Qa→ ¬Pa
→r

The characteristic clause set of ψ is

CL(ψ) = {Pa1 ` Qa2; Pa1, Qa2 `; ` Pa1, Qa2; Qa2 ` Pa1}

This clause set is typical for an ACNFtop. Clearly CL(ϕ) ≤ss CL(ψ).
Now, consider the (very redundant) projections of ψ with respect to CL(ψ):

ψ[` Pa1, Qa2]

Pa ` Pa1

Pa ` Pa1, Pa
wr

¬Pa, Pa ` Pa1
¬l

¬Pa, Pa ` Pa1, Qa
wr

Qa ` Qa2

Qa ` Qa2, Qa
wr

Pa,¬Pa ∨Qa ` Pa1, Qa2, Qa
∨l

Pa,∀y(¬Py ∨Qy) ` Pa1, Qa2, Qa
∀l

¬Qa, Pa,∀y(¬Py ∨Qy) ` Pa1, Qa2
¬l

¬Qa,∀y(¬Py ∨Qy) ` Pa1, Qa2,¬Pa
¬r

∀y(¬Py ∨Qy) ` Pa1, Qa2,¬Qa→ ¬Pa
→r

ψ[Pa1 ` Qa2]

Pa1 ` Pa
Pa, Pa1 ` Pa

wl

¬Pa, Pa, Pa1 `
¬l

¬Pa, Pa, Pa1 ` Qa
wr

Qa ` Qa2

Qa ` Qa2, Qa
wr

Pa, Pa1,¬Pa ∨Qa ` Qa2, Qa
∨l

Pa, Pa1,∀y(¬Py ∨Qy) ` Qa2, Qa
∀l

¬Qa, Pa, Pa1, ∀y(¬Py ∨Qy) ` Qa2
¬l

¬Qa, Pa1, ∀y(¬Py ∨Qy) ` Qa2,¬Pa
¬r

Pa1,∀y(¬Py ∨Qy) ` Qa2,¬Qa→ ¬Pa
→r

ψ[Pa1, Qa2 `]

Pa1 ` Pa
Pa, Pa1 ` Pa

wl

¬Pa, Pa, Pa1 `
¬l

¬Pa, Pa, Pa1 ` Qa
wr

Qa2 ` Qa
Qa,Qa2 ` Qa

wl

Pa, Pa1, Qa2,¬Pa ∨Qa ` Qa
∨l

Pa, Pa1, Qa2, ∀y(¬Py ∨Qy) ` Qa
∀l

¬Qa, Pa, Pa1, Qa2,∀y(¬Py ∨Qy) `
¬l

¬Qa, Pa1, Qa2, ∀y(¬Py ∨Qy) ` ¬Pa
¬r

Pa1, Qa2, ∀y(¬Py ∨Qy) ` ¬Qa→ ¬Pa
→r

ψ[Qa2 ` Pa1]

Pa ` Pa1

Pa ` Pa1, Pa
wr

¬Pa, Pa ` Pa1
¬l

¬Pa, Pa ` Pa1, Qa
wr

Qa2 ` Qa
Qa,Qa2 ` Qa

wl

Pa,Qa2,¬Pa ∨Qa ` Pa1, Qa
∨l

Pa,Qa2, ∀y(¬Py ∨Qy) ` Pa1, Qa
∀l

¬Qa, Pa,Qa2,∀y(¬Py ∨Qy) ` Pa1
¬l

¬Qa,Qa2, ∀y(¬Py ∨Qy) ` Pa1,¬Pa
¬r

Qa2, ∀y(¬Py ∨Qy) ` Pa1,¬Qa→ ¬Pa
→r
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To simulate the elimination of the cut with the atom Pa1 we have to resolve

• ψ[` Pa1, Qa2] and ψ[Pa1 ` Qa2],

• ψ[Pa1, Qa2 `] and ψ[Qa2 ` Pa1].

We first resolve ψ[` Pa1, Qa2] and ψ[Pa1 ` Qa2] by using the inference
order in the proof ψ, resulting in ψ′1:

Pa ` Pa
¬Pa, Pa `

¬l

¬Pa, Pa ` Qa
wr

Qa ` Qa2

Qa ` Qa2, Qa
wr

Pa,¬Pa ∨Qa ` Qa2, Qa
∨l

Pa,∀y(¬Py ∨Qy) ` Qa2, Qa
∀l

¬Qa, Pa,∀y(¬Py ∨Qy) ` Qa2
¬l

¬Qa,∀y(¬Py ∨Qy) ` Qa2,¬Pa
¬r

∀y(¬Py ∨Qy) ` Qa2,¬Qa→ ¬Pa
→r

Now, ψ′1 is exactly the projection of the proof ψ′ (obtained by eliminating the
cut with Pa1) to ` Qa2, where CL(ψ′) = {` Qa2; Qa2 `}. Indeed, ψ′:

Pa ` Pa
Pa,¬Pa `

¬l

Pa,¬Pa ` Qa
wr

Qa ` Qa2 Qa2 ` Qa
Qa ` Qa cut

Pa,¬Pa ∨Qa ` Qa
∨l

Pa,∀y(¬Py ∨Qy) ` Qa
∀l

Pa,∀y(¬Py ∨Qy) ∨Qa `
¬l

∀y(¬Py ∨Qy),¬Qa ` ¬Pa
¬r

∀y(¬Py ∨Qy) ` ¬Qa→ ¬Pa
→r

In the same way, we build the proof resolution of ψ[Pa1, Qa2 `] and ψ[Qa2 `
Pa1] (again respecting the inference order in ψ) and obtain ψ′2:

Pa ` Pa
¬Pa, Pa `

¬l

¬Pa, Pa ` Qa
wr

Qa2 ` Qa
Qa,Qa2 ` Qa

wl

Pa,Qa2,¬Pa ∨Qa ` Qa
∨l

Pa,Qa2, ∀y(¬Py ∨Qy) ` Qa
∀l

¬Qa, Pa,Qa2, ∀y(¬Py ∨Qy) `
¬l

¬Qa,Qa2,∀y(¬Py ∨Qy) ` ¬Pa
¬r

Qa2, ∀y(¬Py ∨Qy) ` ¬Qa→ ¬Pa
→r

which is, of course, the projection of ψ′ to the clause Qa2 `. As ψ′ has one cut
less than ψ we may apply the induction hypothesis and obtain an intuitionistic
proof by resolving the projections ψ′1 and ψ′2 to an intuitionistic proof. This
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proof is
Pa ` Pa
Pa,¬Pa `

¬l

Pa,¬Pa ` Qa
wr

Qa ` Qa
Pa,¬Pa ∨Qa ` Qa

∨l

Pa,∀y(¬Py ∨Qy) ` Qa
∀l

Pa,¬Qa,∀y(¬Py ∨Qy) `
¬l

∀y(¬Py ∨Qy),¬Qa ` ¬Pa
¬r

∀y(¬Py ∨Qy) ` ¬Qa→ ¬Pa
→r

which is identical to a proof obtained by reductive elimination.
Now, we simulate the resolutions on the proof ϕ:

• The resolution of ψ[` Pa1, Qa2] and ψ[Pa1 ` Qa2] corresponds to a reso-
lution ϕ′ of ϕ[` Pa1] and ϕ[Px1 ` Qx2].

• The resolution of ψ[Pa1, Qa2 `] and ψ[Qa2 ` Pa1] corresponds to the
projection ϕ[Qa2 `] itself.

Now, the projection ψ[` Pa1, Qa2] is subsumed by ϕ[` Pa1] and ψ[Pa1 `
Qa2] by ϕ[Px1 ` Qx2]. This holds also for the proof resolutions which are both
of the form ϕ′ = ψ′1:

Pa ` Pa
Pa,¬Pa `

¬l

Qa ` Qa2

Qa ` Qa2, Qa
wl

Pa,¬Pa ∨Qa ` Qa2, Qa
∨l

Pa,∀y(¬Py ∨Qy) ` Qa2, Qa
∀l

Pa,∀y(¬Py ∨Qy),¬Qa ` Qa2
¬l

∀y(¬Py ∨Qy),¬Qa ` ¬Pa,Qa2
¬r

∀y(¬Py ∨Qy) ` ¬Qa→ ¬Pa,Qa2
→r

Clearly ϕ′ and ψ[Qa2 `] then resolve to the same cut-free proof as obtained
via the ACNFtop ψ.

8.1. Epsilonization

It is a well-known fact that skolemization (or, better, de-skolemization) can
generate unsound proofs in intuitionistic logic. We could, in principle, skolem-
ize an LJ proof, remove the cuts via CERES-i, but we could not de-skolemize
the final cut-free proof without running the risk of generating an invalid proof.
This problem can be resolved by using the epsilonization method for LJ pro-
posed in [17]. In this paper, the authors define LJ?, a modified version of LJ
where the terms used for weak quantifier rules (∀l and ∃r) must satisfy the so
called accessibility condition. Intuitively, this condition encodes the fact that
any eigenvariable used in the term was already introduced by a strong quanti-
fier rule below. This allows for the de-epsilonization process to introduce the
strong quantifiers at the right places. We describe briefly how the epsilonization
procedure can be integrated in CERES-i.
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Transforming an LJ proof into an LJ? proof is trivial. Since there are
no ε-terms in LJ, no accessibility conditions are violated. Then epsilonization
can be performed and we will have an LJ? proof without strong quantifiers.
At this point, all operations of CERES-i can be performed, treating ε-terms as
eigenvariables. The difference between them and actual eigenvariables is simply
the information available for de-epsilonization. In fact, this information can
even be used to refine the proof resolution process, avoiding rule orderings that
would clearly fail when removing ε-terms. Once the cut-free proof is obtained,
the proof can be de-epsilonized and transformed back into LJ (also not a hard
procedure, since the rules are the same and there are no eigenvariable violations,
guaranteed by the accessibility conditions).

8.2. A Refinement of CERES-i

Though Theorem 8.1 guarantees that, by iterated resolution of proof projec-
tions and their resolvents, we always reach an intuitionistic cut-free proof, the
method CERES-i is not very efficient. In fact, once we derive a wrong resolvent
ψ, all further resolvents having ψ as ancestor could be useless and heavy back-
tracking would be necessary. Below, we define a refinement of proof resolution
which is still complete but strongly reduces backtracking.

Consider a CERES-projection π of a proof ϕ of a sequent Γ ` ∆ (for ∆
empty or consisting of a formula A). Then the end-sequent of π is of the form
A,Γ′ ` ∆′,B, where Γ′ ` ∆′ is a subsequent of Γ ` ∆ and A ` B is an atomic
sequent consisting of atoms from the axioms of ϕ. We call A ` B the clause part
of es(π). Moreover, every sequent occurring in the proof π has a clause part and
an end-sequent part (the formula occurrences which are ancestors of Γ′ ` ∆′).
To clearly distinguish the clause part from the end-sequent part, we may give
the atoms of the clause part indices as we have done it in our examples (and
leave the formulas which are end-sequent ancestors without indices). Then it is
easy to see that the property of partitioning into clause part and end-sequent
part is invariant under resolution. Now, let us consider the proof of ground
completeness in Section 7: in resolving the projections of an ACNFtop of ϕ
we never produce a resolvent having two or more occurrences of an end-sequent
ancestor at the right-hand side of a sequent; indeed if we look at the end-sequent
part S′ of a sequent S occurring in a resolvent ψ then S′ is an intuitionistic
sequent. This observation motivates the following definitions:

Definition 8.1 (CERES-proof). A cut-free proof ψ is a CERES-proof if it is cut-
free and es(ψ) is of the form A,Γ ` ∆,B, where Γ ` ∆ is a closed sequent and
A ` B is an atomic sequent consisting of atoms occurring in the axioms of ψ,
and there are no inferences on ancestors of A ` B in ψ. Let S be a sequent
occurring in ψ and A′ ` B′ the subsequent of S consisting of ancestors of A ` B;
then A′ ` B′ is called the clause part of S (notation c(S)). The remaining part
of S is called the end-sequent part of S (notation e(S)).

The proofs obtained by proof resolution in Section 7 are, in general, not
intuitionistic, but all sequents occurring in these proofs have only intuitionistic
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end-sequent parts. So only the clause parts of the proofs make them non-
intuitionistic.

Definition 8.2 (weakly intuitionistic). A CERES-proof ψ is called weakly in-
tuitionistic if, for all sequents S occurring in ψ, e(S) is intuitionistic.

Proposition 8.1. Let ϕ,ψ be CERES-proofs and χ be a resolvent of ϕ and ψ
defined on atoms of the clause parts of es(ϕ) and es(ψ). Then χ is also a
CERES-proof.

Proof. CERES-proofs are closed under substitution; so resolving two CERES-proofs
reduces to proof resolution. It is easy to see that the linearity condition on the
atom parts is preserved under proof resolution.

Corollary 8.1. Let ϕ∗ be an ACNFtop-normal form of ϕ and χ be a proof
derived by proof resolution from P(ϕ∗), the set of projections of ϕ∗. Then χ is
weakly intuitionistic.

Proof. All projections are CERES-proofs and, by Proposition 8.1, only CERES-
proofs can be derived from them. By construction of the proof resolutions, all
end-sequent parts are intuitionistic.

We have seen in Theorem 5.1 that, for an intuitionistic proof ψ and a proof
subsumption (ϕ,ψ, η), ϕ is intuitionistic as well; this property is crucial to the
completeness theorem. It also generalizes to weakly intuitionistic proofs.

Theorem 8.2. Let ψ be a weakly intuitionistic CERES-proof and (ϕ,ψ, η) be a
proof subsumption. Then ϕ is weakly intuitionistic.

Proof. We can transform every CERES-proof ψ′ to a proof ψ, where all atoms in
the clause part are labeled by numbers (to distinguish them from atoms in the
end-sequent part). As there are no inferences on atoms in the clause part, there
are also no contractions on these atoms keeping the indexing stable. Therefore,
if Sη ⊆ S′, then both (e(S), e(S′), η) and (c(S), c(S′), η) are proof subsumptions
as well. Now, as for every sequent S occurring in ϕ, there must be a sequent S′

in ψ such that (S, S′, η) is a proof subsumption ,we also get that (e(S), e(S′), η)
is a proof subsumption. So, as ψ is weakly intuitionistic, e(S′) is intuitionistic
and so e(S) is intuitionistic. Hence, ϕ is weakly intuitionistic.

Definition 8.3 (i-resolution). Let ϕ,ψ be CERES-proofs and χ be a resolvent
of ϕ and ψ such that χ is weakly intuitionistic. Then χ is called an i-resolvent.
A resolution derivation R is called an i-resolution deduction if all proofs in
R are weakly intuitionistic. We define CERES-i0 as the method CERES-i where
resolution is replaced by i-resolution.

Theorem 8.3 (completeness of CERES-i0). Let ϕ be an LJ-proof of a skolemized
end-sequent S. Then the application of CERES-i0 to ϕ yields a cut-free LJ-proof
χ of S.
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Proof. By Theorem 8.1 we know that CERES-i is complete. Essentially the re-
finement used by CERES-i0 provides an ordering which we can use to guide the
proof resolution. Corollary 8.1 provides a basecase for induction over this order-
ing. For the step case it is possible for certain proof resolution steps on weakly
intuitionistic proofs to result in a proof which is not weakly intuitionistic. But
by Lemma 6.1 and Theorem 8.2 we can always fix these cases in order to avoid
the loss of weak intuitionism and maintain the property. If we start from the
projection of an ACNFtop-normal form, we know that the clause set present in
those projection will always reach bottom and thus at some point the result of
proof resolution will be an LJ-proof.

Example 8.2. Let ϕ be the proof

(ϕ1)

∀x.Qx,∀x.(Qx→ Px) ` ∀x.(P 1x ∨ ¬P 2x)

(ϕ2)

∀x.(P 1x ∨ ¬P 2x) ` ¬¬Pa→ Pa

∀x.Qx,∀x.(Qx→ Px) ` ¬¬Pa→ Pa
cut

where ϕ1 =
Qy ` Qy Py ` P 1y

Qy,Qy → Py ` P 1y
→l

∀x.Qx,∀x.(Qx→ Px) ` P 1y
∀l − 2×

∀x.Qx,∀x.(Qx→ Px) ` P 1y ∨ ¬P 2y
∨r

∀x.Qx,∀x.(Qx→ Px) ` ∀x.(P 1x ∨ ¬P 2x)
∀r

and ϕ2 =

Pa1 ` Pa
Pa1,¬¬Pa ` Pa

wl

Pa1 ` ¬¬Pa→ Pa
→r

Pa ` Pa2

Pa,¬Pa2 `
¬l

¬Pa2 ` ¬Pa
¬r

¬Pa2,¬¬Pa `
¬l

¬Pa2,¬¬Pa ` Pa
wr

¬Pa2 ` ¬¬Pa→ Pa
→r

Pa1 ∨ ¬P 2a ` ¬¬Pa→ Pa
∨l

∀x.(P 1x ∨ ¬P 2x) ` ¬¬Pa→ Pa
∀l

Then our characteristic clause set is {` Py1; Pa1 `; ` Pa2}. We have three
projections π1, π2, π3 for

π1 =

Qy ` Qy Py ` P 1y

Qy,Qy → Py ` P 1y
→l

∀x.Qx,∀x.(Qx→ Px) ` P 1y
∀l − 2×

π2 =

Pa1 ` Pa
Pa1,¬¬Pa ` Pa

wl

Pa1 ` ¬¬Pa→ Pa
→r

and

π3 =

Pa ` Pa2

` Pa2,¬Pa
¬r

¬¬Pa ` Pa2
¬l

¬¬Pa ` Pa2, Pa
wr

` Pa2,¬¬Pa→ Pa
→r

All projections are weakly intuitionistic, π1 and π2 are intuitionistic - but
π3 is not. It is easy to see that no proof resolution of π2 and π3 is either
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intuitionistic or weakly intuitionistic, for the simple reason that the end-sequent
of the resolution is a cut-free proof ψ of ` ¬¬Pa→ Pa. As this sequent is not
intuitionistically provable, ψ cannot be an intuitionistic proof. Clearly, also none
of the resolvents of π2 and π3 is an i-resolvent. Therefore, we have to resolve π1
and π2 on (Py1, Pa1) with most general unifier {y ← a}. One resolvent of π1
and π2 is

Qa ` Qa

Pa ` Pa
Pa,¬¬Pa ` Pa

wl

Pa ` ¬¬Pa→ Pa
→r

Qa,Qa→ Pa ` ¬¬Pa→ Pa
→l

∀x.Qx,∀x.(Qx→ Px) ` ¬¬Pa→ Pa
∀l − 2×

which is a result of the method CERES-i0.

9. Applications of CERES-i

The method CERES-i and its improvement CERES-i0 form a basic tool for
proof analysis in intuitionistic logic. Classical CERES has been used success-
fully in analyzing nontrivial mathematical proofs like Fürstenberg’s proof of
the infinitude of primes [3]. As this proof is intrinsically classical it is not the
right candidate for an analysis via CERES-i. We rather think about an appli-
cation to a mathematical proof in linear algebra. In particular, we plan to
formalize a proof that a particular system of linear equations has a solution,
where the proof uses the Kronecker-Capelli theorem [18](the theorem says that,

given an n × n matrix A and an n-vector ~b, the system A~x = ~b is solvable
iff rank(A) = rank(A|b)). Thus one can prove the solvability of A~x = ~b by
proving first rank(A) = rank(A|b) and using cut with the Kronecker-Capelli
theorem. Then by applying cut-elimination one can obtain a concrete solution
for A~x = ~b. In the case of a natural deduction formulation and normalization,
this would yield exactly one solution even if there are infinitely many. By the
non-confluence inherent in the CERES (and also the CERES-i) method, we can
expect to obtain different solutions even in the intuitionistic case. Note that
the application of the classical CERES method would produce a set of candidate
solutions, where the correct solution still needs to be identified after application
of cut-elimination. Hence by application of different methods of cut-elimination
to a single intuitionistic proof, we can expect different kinds of results. We
intend to systematically compare their strengths and weaknesses in the context
of this case study.

At this point, there is no implementation of the method CERES-i, but we plan
to implement it based on indexed resolution6 as a search heuristic for resolution
refutations.

In order to use indexed resolution, we need to assign indices to the atoms
occurring in the cut-formulas of a proof. The assignment of these indices is done
in such a way that in each cut the two opposite occurrences of the cut-formula

6See Section 7 for indexed resolution restricted to proofs in ACNFtop.
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have exactly the same indices and each atom within the cut-formula gets a
different index. As a consequence, all atomic cut-ancestors in such an indexed
proof have an assigned index as well. Additionally, we require that no two cut-
formulas coming from different cuts have the same indexing. This situation may
change after applying cut-reduction steps, but the initial assignment has to fulfil
this requirement. For an example of a proof with atom indexing, see the proof
ϕ′ below. The indexed resolution rule itself is then just a restricted form of the
ordinary resolution rule, where we only allow to resolve upon atoms having the
same index.

Indexed resolution has the nice feature that it drastically reduces the search
space for resolution refutations of the characteristic clause set. This is due to the
fact that many clauses that could have been resolved using ordinary resolution
can no longer be resolved after taking their assigned indices into account.

We conjecture that indexed resolution is complete for CERES-i in the follow-
ing sense: every indexed resolution refutation of the characteristic clause set
CL(ϕ) of a proof ϕ can serve as a skeleton for a CERES-i normal form. Using
this refinement we can reduce the search space considerably. Note that the
method CERES-i with ordinary resolution applied to an intuitionistic proof does
not have this nice property, as the proof ϕ of P ∨¬P ` ¬¬P → P in Section 3.1
demonstrates.

However, in the case of indexed resolution we can circumvent this problem
using the method CERES-i. By assigning to each atomic cut-ancestor in ϕ a
unique index, we can obtain from ϕ an indexed proof ϕ′ (with the same end-
sequent) of the following form:

P ` P 1

P ` P 1 ∨ ¬P 2
∨r

P 2 ` P
P 2,¬P `

¬l

¬P ` ¬P 2
¬r

¬P ` P 1 ∨ ¬P 2
∨r

P ∨ ¬P ` P 1 ∨ ¬P 2
∨l

P ` P 2

¬P 2, P `
¬l

¬P 2 ` ¬P
¬r

¬P 2,¬¬P `
¬l

¬P 2,¬¬P ` P
wr

¬P 2 ` ¬¬P → P
→r

P 1 ` P
P 1,¬¬P ` P

wl

P 1 ` ¬¬P → P
→r

P 1 ∨ ¬P 2 ` ¬¬P → P
∨l

P ∨ ¬P ` ¬¬P → P
cut

The characteristic clause set CL(ϕ′) is the following

CL(ϕ′) = {P 2 ` P 1 ; P 1 `; ` P 2},

First, consider the indexed resolution refutation of CL(ϕ′):

` P 2

P 2 ` P 1 P 1 `
P 2 ` R

` R

The corresponding minimal projections ϕ′[` P 2], ϕ′[P 1 `], and ϕ′[P 2 ` P 1]
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are

P ` P 2

` P 2,¬P
¬r

¬¬P ` P 2
¬l

¬¬P ` P 2, P
wr

` P 2,¬¬P → P
→r

P 1 ` P
P 1,¬¬P ` P

wl

P 1 ` ¬¬P → P
→r

P ` P 1

P 2 ` P
¬P, P 2 `

¬r

¬P, P 2 ` P 1
wr

P ∨ ¬P, P 2 ` P 1
∨l

Based on these indexed projections, we end up with the following proof:

P ` P 2

` P 2,¬P
¬r

¬¬P ` P 2
¬l

¬¬P ` P 2, P
wr

` P 2,¬¬P → P
→r

P ` P 1

P 2 ` P
¬P, P 2 `

¬r

¬P, P 2 ` P 1
wr

P ∨ ¬P, P 2 ` P 1
∨l

P 1 ` P
P 1,¬¬P ` P

wl

P 1 ` ¬¬P → P
→r

P ∨ ¬P, P 2 ` ¬¬P → P
cut

P ∨ ¬P ` ¬¬P → P,¬¬P → P
cut

P ∨ ¬P ` ¬¬P → P
cr

The above proof still violates the restrictions of LJ, but it does not contain a
proof of an intuitionistically invalid sequent anymore. In order to get a CERES-i
normal form we need to apply (ground) proof resolution to the projections of
CL(ϕ′).

Proof resolution on ϕ′[P 2 ` P 1] and ϕ′[P 1 `] yields the following result ψ:

P ` P

P 2 ` P
¬P, P 2 `

¬r

¬P, P 2 ` P
wr

P ∨ ¬P, P 2 ` P
∨l

P ∨ ¬P, P 2,¬¬P ` P
wl

P ∨ ¬P, P 2 ` ¬¬P → P
→r

After applying proof resolution on ψ and ϕ′[` P 2] we arrive at the following
CERES-i normal form ψ′:

P ` P

P ` P
¬P, P `

¬l

¬P ` ¬P
¬r

¬P,¬¬P `
¬l

¬P,¬¬P ` P
wr

P ∨ ¬P,¬¬P ` P
∨l

P ∨ ¬P ` ¬¬P → P
→r

Clearly, ψ′ is an intuitionistic proof of P ∨ ¬P ` ¬¬P → P .

10. Complexity results

The elimination of cuts in a sequent calculus proof is, in general, of non-
elementary complexity. The lower bound on this complexity was established
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by Statman in [19] (later the upper bound was shown to be the same [11])
and the same proof sequence can be used to show that the classical CERES

method is also non-elementary [7, Section 6.5]. The main source of complexity
in cut-elimination by resolution is the size of resolution refutations. Since the
intuitionistic method CERES-i also relies on the refutation of the clause set, we
can safely say that a non-elementary function is also its lower bound.

Nevertheless, the CERES method (for classical first-order logic) was shown to
give a non-elementary speed up over two reductive methods: one that reduces
always an uppermost cut (Gentzen) and another that reduces always a most
complex cut (Tait-Schütte). That is, there exist sequences of proofs for which
the size of the largest proof constructed during those reductive cut-elimination
methods is non-elementary on the size of the initial proof, though, for the ex-
act same sequence, there exists elementary-sized refutations of the sequence of
characteristic clause sets [7, Section 6.10]. Moreover it is shown that neither
the Gentzen nor the Tait-Schütte method (provided they construct an ACNF
and do not use the axiom rule) can speed up CERES non-elementarily [7, Theo-
rem 6.10.3]. Without restricting the cut-elimination strategy, it was shown that
CERES can be exponentially worse than reductive methods [20].

In this section, we compare the CERES-i method with specific reductive cut-
elimination strategies to obtain similar results. Our complexity analysis is based
on the space complexity of the methods, measuring the objects of maximal size
constructed by the algorithms. For the first result, we use the reductive cut-
elimination that first obtains an ACNFtop from the original proof with cuts and
only then removes the atomic cuts. We show that the space complexity of CERES-
i is an elementary function on the size of the ACNFtop. Since this size is a lower
bound on the space complexity of the reductive cut-elimination considered, we
get as a result that the complexity of CERES-i is elementarily bound in that of this
reductive method. For the second result, we use the aforementioned Gentzen
method, which reduces always the uppermost cut first. We show that there
is a sequence of proofs for which the space complexity of CERES-i is constant,
while reductive cut-elimination using the Gentzen method is non-elementary. By
taking the intersection of both reductive methods (i.e. obtaining the ACNFtop

using the Gentzen strategy and then removing the atomic cuts), we have a
reductive cut-elimination method which is outperformed by CERES-i.

Definition 10.1. We define the size of a sequent calculus proof ϕ, denoted by
|ϕ| as the number of symbols used in the proof (including logical connectives,
parenthesis, meta-connectives such as the sequent sign, as well as all the symbols
used for predicates and terms).

In what follows we show the relation between the sizes of the ACNFtop and
the cut-free proof obtained by CERES-i.

Lemma 10.1. Let ϕ be an LJ-proof with cuts, ϕt0 its ACNFtop, and Pmax
the largest projection in P(ϕt0). Let ψ be a proof derived by proof resolution
of the projections P(ϕt0), and let r be the number of resolution steps. Then
|ψ| ≤ 2r × |Pmax|.
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Proof. Consider two proofs χ1 and χ2 that are resolved (via proof resolution)
into χ. Then it is safe to say that |χ| ≤ |χ1| + |χ2| ≤ 2 × max(|χ1|, |χ2|).
Now, suppose that χ is the result of the first resolution step of the projections
P(ϕt0). Then |χ| ≤ 2 × |Pmax|. All following resolution steps will, at most,
double this value. Since there are r resolution steps, we can conclude that
|ψ| ≤ 2r × |Pmax|.

Theorem 10.1. Let ϕ be an LJ-proof with cuts, ϕt its ACNFtop and ψ a cut-
free proof derived by a proof resolution of the projections P(ϕt) in r resolution
steps Then |ψ| ≤ 2r × |ϕt|.
Proof. From Lemma 10.1, we know that |ψ| ≤ 2r × |Pmax|, where Pmax is the
biggest projection in P(ϕt). Given the definition of projection, we can assume
that |Pmax| ≤ |ϕt|. Using these two inequalities we obtain the desired result:
|ψ| ≤ 2r × |ϕt|

Observe that this result uses the normal form obtained by CERES-i applied
to a proof in ACNFtop. In order to generalize it for any kind of LJ proof, we
will use the subsumption property.

Lemma 10.2. Let ϕ be an LJ-proof with cuts and ϕt its ACNFtop. Let ψ
be a normal form obtained by applying CERES-i to ϕ and ψ′ be a normal form
obtained by applying CERES-i to ϕt. Then |ψ| ≤ |ψ′|k for some k ∈ R.

Proof. By Theorem 7.2, there exists a proof resolution of the projections P(ϕt)
yielding a cut-free LJ-proof ψ. By Theorem 5.2, all projections in P(ϕt) are
subsumed by the projections in P(ϕ). By Lemma 6.1, there exists a proof
resolution of P(ϕ) resulting in a proof ψ′ that subsumes ψ, the proof resolution
of P(ϕt). Now that we clarified this relationship we can proceed with bounding
the size ψ in terms of ψ′. This does not generally hold for subsuming proofs,
but holds in this case, since the proof resolutions are derived from the same
proof. We prove this by induction on the subsumption (Definition 5.3).

Base case: For the base case we have that ψ is an axiom and that es(ψ)σ ⊆
es(ψ′). Clearly, |ψ| ≤ |ψ′|. 7

Inductive cases:
The inequality holds for all inductive cases trivially, except 3(b)i, 3(b)ii,

4a and 4b. The cases 3(b)i and 3(b)ii are analogous, as are cases 4a and 4b,
therefore, we will restrict the analysis to one of each.

• Case 3(b)i: The proofs ψ and ψ′ are, respectively:

(ψ1)

A0,Γ
′ ` ∆

A0,Γ
′ ` ∆, B

wr

Γ′ ` ∆, A0 → B
→r

(ψ′1)
A,Π ` Λ, B

Π ` Λ, A→ B
→r

7Observe that if we had not restricted ourselves to CERES-i normal forms, we could have
a situation where ψ′ is an axiom but ψ is not (imagine a proof that has an axiom as its
end-sequent, and only nonsensical structural rules above it).
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By inductive hypothesis we assume that |ψ1| ≤ |ψ′1|k. We know that
(Γ′ ` ∆, A0 → B)σ ⊆ Π ` Λ, A → B, therefore the inequality still holds
by adding the symbols of both end-sequents to the respective proofs. We
need to worry only with the sequent A0,Γ

′ ` ∆, B in ϕ. But note that
the number of symbols in this sequent is strictly less than the number of
symbols in es(ψ′). We can thus safely say that |ψ| ≤ 2 × |ψ′| ≤ |ψ′|k for
a sufficiently large k.

• Case 4a: The proofs ψ and ψ′ are, respectively:

(ψ1)
Γ1 ` ∆1

Γ1,Γ
∗ ` ∆1,∆

∗ w
∗
l , w

∗
r

(ψ′1)
Π1 ` Λ1, A

(ψ′2)
Π2 ` Λ2, B

Π1,Π2 ` Λ1,Λ2, A ∧B
∧r

By inductive hypothesis we assume that |ψ1| ≤ |ψ′1|c. We know that
(Γ1,Γ

∗ ` ∆1,∆
∗)σ ⊆ (Π1,Π2 ` Λ1,Λ2), therefore the end-sequents do not

affect the inequality. We need only to compare the number of symbols in
the sequence of weakenings of Γ∗,∆∗ (in ψ) with those in ψ′2 (in ψ′). Note
that Γ∗ ⊆ Π2 and ∆∗ ⊆ Λ2, so the symbols introduced by Γ∗,∆∗ are at
most the size of ψ′2 (worst case scenario, these formulas were also weakened
in ψ′2, and it contains an additional B). We need only to worry about the
copies of Γ1,∆1. Note that at most |Γ∗| + |∆∗| ≤ |ψ′2| ≤ |ψ′| number
of weakenings were performed, copying at most |Γ1| + |∆1| ≤ |ψ′1| ≤ |ψ′|
formulas. Then, |ψ| ≤ |ψ′1|c + |ψ′|2 ≤ |ψ′|k for a sufficiently large k.

Theorem 10.2. Let ϕ be an LJ-proof with cuts, ϕt its ACNFtop, ψ′ be a cut-
free proof derived by a proof resolution of the projections P(ϕt) in s resolution
steps, and ψ be a cut-free proof derived by a proof resolution of the projections
P(ϕ). Then |ψ| ≤ 2sk × |ϕt|k, for some constant k, which is independent of ϕ
and ψ.

Proof. By Theorem 10.1, we know that |ψ′| ≤ 2s × |ϕt|. By Lemma 10.2 we
know that |ψ| ≤ |ψ′|k for some constant k. Thus, |ψ| ≤ |ψ′|k ≤ (2s × |ϕt|)k
Using these results, we can conclude that |ψ| ≤ 2sk × |ϕt|k.

We have shown that the size of the final proof using CERES-i is an exponential
function on the number of resolution steps and a polynomial function on the
size of the proof obtained by the reductive cut-elimination method considered.
We now use this result to obtain a relation between the space complexity of the
methods.

Definition 10.2 (R cut-elimination sequence). Let R be a set of cut re-
duction rules and Φ be the cut-elimination sequence: ϕ0  R ϕ1...  R ϕn
where ϕn is cut-free. Then Φ is called a R cut-elimination sequence on ϕ0. We
define the size of Φ as |Φ| = max{|ϕi| | 0 ≤ i ≤ n}.
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The complexity of a reductive cut-elimination method is given by the small-
est possible cut-elimination sequence on a given proof.

Definition 10.3 (Complexity of reductive cut-elimination). Let R be a
system of reductive cut-elimination and ϕ be an LJ-proof. Then the complexity
of reductive cut-elimination on ϕ via R is defined as

‖ϕ‖R = min{|Φ| | Φ is a cut-elimination sequence on ϕ}.

Definition 10.4. Let Rtop denote the reduction strategy for cut elimination
that first obtains an ACNFtop using the rewrite rules Ra and only then removes
the atomic cuts. Every Rtop cut-elimination sequence on a proof ϕ0 is of the
form:

ϕ0  Ra ...ϕk  R ...ϕn

where ϕk is an ACNFtop of ϕ0 and ϕn is cut-free.

Theorem 10.3. There exists an elementary function f such that, given an LJ-
proof ϕ and an Rtop cut-elimination sequence Φ of the form ϕ ∗Ra ϕt  ∗R ϕ0

(where ϕt is an ACNFtop), |ϕt| ≤ f(|Φ|).

Proof. In the general case, the final proof in a cut-elimination reduction se-
quence might be non-elementarily bigger than the initial proof with cuts. But
in the case of this strategy, the final transformation from ϕt to a cut free ϕ′ only
reduces the size of the proof. Therefore, a potential “non-elementarity” must
already occur at the ACNFtop.

The method CERES-i can also be described via a sequence of proofs beginning
with a proof ϕ0 and ending with a cut free proof ϕn. However, the difference
to reductive cut-elimination is that the occurring proofs are either projections
of the original proof ϕ or resolvents of proofs occurring earlier in the sequence.

Definition 10.5 (CERES-i sequence). Let ϕ be an LJ-proof and and P(ϕ) its
set of projections. A sequence Ψ: ϕ0, . . . , ϕn is called a CERES-i sequence if
ϕ0 ∈ P(ϕ) and for all i ∈ {1, . . . , n} either ϕi ∈ P(ϕ) or there are j, k < i
such that ϕi is a proof resolvent of ϕj and ϕk. If ϕn is cut free and in LJ then
we call Ψ a CERES-i cut-elimination sequence on ϕ. The size of Ψ is defined as
|Ψ| = max{|ϕi| | 0 ≤ i ≤ n}.

Definition 10.6 (Complexity of CERES-i). Let ϕ be an LJ-proof. Then the
CERES-i cut-elimination complexity of ϕ is defined as

‖ϕ‖C = min{|Ψ| | Ψ is a CERES-i cut-elimination sequence on ϕ}.

Theorem 10.4. Let ϕ be an LJ-proof and ψ be a cut free proof of minimal size
obtained by applying CERES-i. Then ‖ϕ‖C = |ψ|.
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Proof. Let χ be the result of resolving two proofs χ1 and χ2. Then it is the case
that |χ| ≥ max(|χ1|, |χ2|). Since the result of proof resolution is always bigger
than its operands, we can conclude that the last proof in the proof resolution
steps for CERES-i is the biggest one and therefore defines the complexity of the
sequence.

Now we can obtain the desired result.

Theorem 10.5. There exists an elementary function g such that for all LJ-
proofs ϕ we have

‖ϕ‖C ≤ g(‖ϕ‖Rtop)

Proof. Let ϕt be the ACNFtop obtained during reductive cut-elimination using
Rtop and ψ the cut free proof obtained by CERES-i. Then, by Theorem 10.2 we
know that |ψ| ≤ 2k×|ϕt|k′ for some k and k′. Using the results of Theorems 10.3
and 10.4 on this inequality we obtain ‖ϕ‖C ≤ 2k × (f(‖ϕ‖Rtop))k

′
. Since all

operations are elementary, we can say that there exists an elementary function
g such that ‖ϕ‖C ≤ g(‖ϕ‖Rtop).

We have thus shown that the space complexity of CERES-i is elementarily
bounded by the space complexity of the cut elimination method Rtop. Next we
use a different reduction strategy to show that there exists a sequence of proof
for which CERES-i is constant and the reduction strategy is non-elementary.

Definition 10.7. Let RG denote the Gentzen reduction strategy for cut elim-
ination that allows rules in R to be applied only to uppermost cuts.

Theorem 10.6. There exists an infinite sequence of LJ-proofs ϕn of sequents
Sn such that

(a) RG is non-elementary: For all RG cut-elimination sequences on ϕn and for
all elementary functions g : N → N, there exists a k such that for every
n > k we have ‖ϕn‖RG > g(|ϕn|).

(b) CERES-i is constant: There exists a resolution derivation δ in CERES-i of
a cut free proof ψ from the projections of ϕn such that for all n ∈ N, ψ
subsumes a cut free proof of Sn.

Proof. Let γn be the short proofs with cuts of the Statman-sequence ∆n ` Dn

(for a formal definition of γn see [4]). Note that γn is a sequence of intuitionistic
proofs. We define ϕn as

A ` A
(γn)

∆n ` Dn

A,∆n ` A ∧Dn
∧r

A ` A
A ∧Dn ` A

∧l

A,∆n ` A
cut

where A is an atom. We get CL(ϕn) = {` A}∪CL(ϕn)∪{A `}. Now consider
the minimal projections

ϕ[` A] = A ` A∗, ϕ[A `] = A∗ ` A.
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We indicate the cut-ancestors by ∗. Then, obviously δ : A ` A is a resolvent of
ϕ[` A] and ϕ[A `]. δ subsumes the cut free intuitionistic proof χn:

A ` A
A,∆n ` A

w∗l

This proves b.

a: RG is of nonelementary complexity as, by the Gentzen refinement, all
cuts in γn must be eliminated first resulting in a cut free proof γ∗n of ∆n ` Dn.
Let γ∗n be the smallest cut free proof of γn; then, clearly, ‖ϕn‖RG ≥ |γ∗n|. As γn
is the Statman sequence we get

‖ϕn‖RG ≥ |γ∗n| > s(n)/2 for s(1) = 2, s(n+ 1) = 2s(n),

and for any elementary function g there exist only finitely many n such that
s(n)/2 ≤ g(n).

Corollary 10.1. There exists no elementary function g such that for all intu-
itionistic proofs ϕ: ‖ϕ‖RG ≤ g(‖ϕ‖C).

Proof. Immediate by Theorem 10.6.

When we combine RG and Rtop we obtain a direct comparison of CERES-i
and reductive cut-elimination in both directions. Let RGtop be the following
cut-elimination method. Given an LJ-proof ϕ we proceed as follows:

1. apply RG to uppermost non-atomic cuts until only atomic cuts are left
and obtain ϕ∗.

2. apply Rtop to ϕ∗ untill a cut free proof is obtained.

Obviously RGtop is a refinement of Rtop. Hence we obtain the result:

Theorem 10.7. It holds that:

(a) There exists an elementary function g s.t. for all LJ-proofs ϕ: ‖ϕ‖C ≤
g(‖ϕ‖RGtop).

(b) There exists no elementary function g s.t. for all intuitionistic proofs ϕ:
‖ϕ‖RGtop ≤ g(‖ϕ‖C).

Proof. For a: Theorem 10.5 holds also for RGtop.
For b: Take the sequence ϕn from Theorem 10.6. We have to argue differ-

ently as we must first compute an ACNFtop before eliminating the atomic cuts.
Therefore we eliminate all nonatomic cuts in the proof γn first and obtain an
atomic cut normal form γ+n (all cuts in γ+n are atomic). As cut-elimination of
atomic cuts is (only) exponential there is no elementary bound on |γ+n | in terms
of |γn| (otherwise there would be an elementary bound on |γ∗n| in terms of |γn|
(see the proof of Theorem 10.6) which does not exist.
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11. Conclusion

This paper is the concluding step on our journey to develop a CERES-like
method for intuitionistic logic. We had perceived from early on that the op-
erations of CERES were intrinsically classical, and after many attempts to pre-
process or post-process the proofs, we realized that the core of the method
needed to be changed. We could no longer separate projections from resolution
proofs in intuitionistic logic; hence we introduced a proof resolution principle,
which generalizes resolutions on clauses to resolutions on proofs. Thus by re-
solving projections one can obtain an intuitionistic cut free proof (even if the
projections themselves are not intuitionistic due to atomic cut ancestors on
the right). The work developed here is dedicated mainly to proving that such
method of proof resolution of projections is complete, i.e., resolving projections
from an intuitionistic proof results eventually in a cut free intuitionistic proof.
The completeness proof relies on another concept borrowed from clauses and
resolutions, namely, proof subsumption.

We believe that one of the main contributions of this work is the definition
of these two concepts, which can easily be lifted to classical logic and used in
other areas of proof theory.

In addition to the completeness results, we have also shown that CERES-i can
outperform a particular kind of reductive cut-elimination, namely, that which
first obtains an ACNFtop by reducing the uppermost nonatomic cuts first and,
in a second step, removes the atomic cuts.

CERES-type methods have been developed for higher-order logic [12], for
finitely valued logics [6] and for Gödel logic [1]. For these logics CERES turned out
to be largely independent of the definition of the chosen calculus. In fact CERES
can be considered as a semi-semantic method compared to the purely syntac-
tic Gentzen type methods of cut-elimination (see [8]). In contrast, CERES-i is
a purely syntactic method depending on the single-conclusion calculus LJ and
there is no obvious way to extend this method to a multi-conclusion calculus
for intuitionistic logic. In classical logic the completeness of the CERES-method
can be established by the semantic completeness of resolution in classical logic
and any resolution refutation can be turned into a atomic cut normal form and
finally into a cut-free proof. We have shown that such an approach fails for LJ.
For LJ we developed the method of proof resolution; for proving completeness
we used reductive cut-elimination and proof subsumption (instead of Kripke
semantics). An investigation of cut-elimination in intermediate logics (like this
of Gödel logic baed on a hypersequent calculus in [1]) via CERES-like proof res-
olution methods remains an interesting topic for future research.

Acknowledgement: We are very grateful to the reviewer for many helpful
comments leading to an improvement of the paper and for the tremendous ef-
fort of reviewing such a long and technical work.
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