
J Autom Reasoning (2019) 63:95–126
https://doi.org/10.1007/s10817-018-9462-8

On the Generation of Quantified Lemmas

Gabriel Ebner1 · Stefan Hetzl1 ·
Alexander Leitsch2 · Giselle Reis3 · Daniel Weller1

Received: 16 January 2017 / Accepted: 14 March 2018 / Published online: 23 March 2018
© The Author(s) 2018

Abstract In this paper we present an algorithmic method of lemma introduction. Given a
proof in predicate logic with equality the algorithm is capable of introducing several univer-
sal lemmas. The method is based on an inversion of Gentzen’s cut-elimination method for
sequent calculus. The first step consists of the computation of a compact representation (a
so-called decomposition) of Herbrand instances in a cut-free proof. Given a decomposition
the problem of computing the corresponding lemmas is reduced to the solution of a second-
order unification problem (the solution conditions). It is shown that that there is always a
solution of the solution conditions, the canonical solution. This solution yields a sequence
of lemmas and, finally, a proof based on these lemmas. Various techniques are developed to
simplify the canonical solution resulting in a reduction of proof complexity. Moreover, the
paper contains a comprehensive empirical evaluation of the implemented method and gives
an application to a mathematical proof.

Keywords Cut-introduction · Herbrand’s theorem · Proof theory · Lemma generation ·
The resolution calculus

B Stefan Hetzl
stefan.hetzl@tuwien.ac.at

Gabriel Ebner
gebner@gebner.org

Alexander Leitsch
leitsch@logic.at

Giselle Reis
giselle@cmu.edu

Daniel Weller
weller@logic.at

1 Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Austria

2 Institute of Logic and Computation, Vienna University of Technology, Vienna, Austria

3 Carnegie Mellon University - Qatar, Al Rayyan, Qatar

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-9462-8&domain=pdf
http://orcid.org/0000-0002-6461-5982

96 G. Ebner et al.

1 Introduction

Computer-generated proofs are typically analytic, i.e. they only contain logical material that
also appears in the theorem proved. This is due to the fact that analytic proof systems have
a much smaller search space which makes proof-search practically feasible. In the case of
sequent calculi, proof-search procedures typically work on the cut-free fragment. Resolution
is also essentially analytic as resolution proofs do not contain complex lemmas. An important
property of non-analytic proofs is their considerably smaller length. The exact difference
depends on the logic (or theory) under consideration, but it is typically enormous. In (classical
and intuitionistic) first-order logic there are proofs with cut of length n whose theorems have
only cut-free proofs of length 2n (where 20 = 1 and 2n+1 = 22n), see [24,27,32]. In contrast,
proofs formalized by humans are almost never analytic. Human insight and understanding
of a mathematical situation is manifested in the use of concepts, as well as properties of, and
relations among, concepts in the form of lemmas. This leads to a high-level structure of a
proof. For these two reasons, their length and the insight they (can) contain, we consider the
generation of non-analytic proofs an aim of high importance to automated deduction.

There is another, more theoretical, motivation for studying cut-introduction which derives
from the foundations of mathematics: most of the central mathematical notions have devel-
oped from the observation that many proofs share common structures and steps of reasoning.
Encapsulating those leads to a new abstract notion, like that of a group or a vector space. Such
a notion then builds the base for a whole new theory whose importance stems from the per-
vasiveness of its basic notions in mathematics. From a logical point of view this corresponds
to the introduction of cuts into an existing proof database. While the introduction of these
notions can certainly be justified from a pragmatic point of view since it leads to natural and
concise presentations of mathematical theories, the question remains whether they can be
justified on more fundamental grounds as well. In particular, the question remains whether
the notions at hand provide for an optimal compression of the proofs under consideration.
A cut-introduction method based on such quantitative aspects (as the one described in this
paper) has the potential to answer such questions, see Sect. 6.1 for a case study.

Work on cut-introduction can be found at a number of different places in the literature.
Closest to our work are other approaches which aim to abbreviate or structure a given input
proof: [35] is an algorithm for the introduction of atomic cuts that is capable of exponential
proof compression. The method [15] for propositional logic is shown to never increase the
size of proofs more than polynomially. Another approach to the compression of first-order
proofs by introduction of definitions for abbreviating terms is [34].

Viewed from a broader perspective, this paper should be considered part of a large body
of work on the generation of non-analytic formulas that has been carried out by numerous
researchers in various communities. Methods for lemma generation are of crucial importance
in inductive theorem proving, which frequently requires generalization [7], see e.g. [20] for
a method in the context of rippling [8] that is based on failed proof attempts. In automated
theory formation [10,11], an eager approach to lemma generation is adopted. This work has,
for example, led to automated classification results of isomorphism classes [30] and isotopy
classes [31] in finite algebra. See also [21] for an approach to inductive theory formation. In
pure proof theory, an important related topic is Kreisel’s conjecture on the generalization of
proofs, see [9]. Based on methods developed in this tradition, [5] describes an approach to
cut-introduction by filling a proof skeleton, i.e. an abstract proof structure, obtained by an
inversion of Gentzen’s procedure with formulas in order to obtain a proof with cuts. The use
of cuts for structuring and abbreviating proofs is also of relevance in logic programming: [23]

123

On the Generation of Quantified Lemmas 97

shows how to use focusing in order to avoid proving atomic subgoals twice, resulting in a
proof with atomic cuts.

Our previous work in this direction has started with [19] where we presented a basic
algorithm for the introduction of a single cut with a single universal quantifier in pure first-
order logic. In [17]wehavemade themethod practically applicable by extending it to compute
a Π1-cut with an arbitrary number of quantifiers and by working modulo equality. In [17] we
have also presented and evaluated an implementation. The method has been further extended
on a proof-theoretic level to the introduction of an arbitrary number of Π1-cuts with one
quantifier each in [18] which already allows for an exponential compression.

In this paper we extend the method to predicate logic with equality and to the introduction
of an arbitrary number of Π1-cuts, each of which has an arbitrary number of quantifiers.
We present an implementation based on a new (and efficient) algorithm for computing a
decomposition of a Herbrand-disjunction [12]. We carry out a comprehensive empirical
evaluation of the implementation and describe a case study demonstrating how our algorithm
generates the notion of a partial order from a proof about a lattice. This paper thus completes
the theory and implementation of our method for the introduction of Π1-cuts.

The paper is organized in the same order as the steps of our algorithm. In Sect. 2, we recall
basic notions and results about proofs, as well as the extraction of Herbrand sequents and how
to encode them as term sets. Sect. 3 is devoted to the computation of decompositions of those
term sets. Then in Sect. 4, we describe how to compute canonical cut formulas induced by
the decomposition. We present several techniques to simplify those canonical cut formulas
in Sect. 5. At the end, we describe our implementation and experiments in Sect. 6.

2 Proofs and Herbrand Sequents

Throughout this paper we consider predicate logic with equality. We typically use the names
a, b, c for constants, f, g, h for functions, x, y, z, α for variables, Γ and Δ for sets for
formulas, and S for sequents. We write sequents in the form S : A1, . . . , An → B1, . . . , Bm

where S is interpreted as the formula (A1 ∧ · · · ∧ An) ⊃ (B1 ∨ · · · ∨ Bm). For convenience
we write a substitution [x1\t1, . . . , xn\tn] in the form [x\t] for x = (x1, . . . , xn) and t =
(t1, . . . , tn).

For practical reasons equality will not be axiomatized but handled via substitution rules.
We extend the sequent calculus LK to the calculus LK= by allowing sequents of the form
→ t = t as initial sequents and adding the following rules:

s = t, A[s], Γ → Δ

s = t, A[t], Γ → Δ
=1

l
s = t, A[t], Γ → Δ

s = t, A[s], Γ → Δ
=2

l

s = t, Γ → Δ, A[s]
s = t, Γ → Δ, A[t] =1

r
s = t, Γ → Δ, A[t]
s = t, Γ → Δ, A[s] =2

r

LK= is sound and complete for predicate logic with equality.
A strong quantifier is a ∀ (∃) quantifier with positive (negative) polarity. The logical

complexity |S|l of a sequent S is the number of propositional connectives, quantifiers and
atoms S contains. We restrict our investigations to end-sequents in prenex form without
strong quantifiers.

Definition 1 A Σ1-sequent is a sequent of the form

∀x1 · · · ∀xk1F1, . . . ,∀x1 · · · ∀xkp Fp → ∃x1 · · · ∃xkp+1Fp+1, . . . , ∃x1 · · · ∃xkq Fq .

123

98 G. Ebner et al.

for quantifier free Fi .

Note that the restriction to Σ1-sequents does not constitute a substantial restriction as
one can transform every sequent into a validity-equivalentΣ1-sequent by Skolemization and
prenexing.

Definition 2 A sequent S is called E-valid if it is valid in predicate logic with equality; S is
called a quasi-tautology [29] if S is quantifier-free and E-valid.

We use |� for the semantic consequence relation in predicate logic with equality.

Definition 3 The length of a proofϕ, denoted by |ϕ|, is defined as the number of inferences in
ϕ. The quantifier complexity of ϕ, written as |ϕ|q , is the number of weak quantifier inferences
in ϕ.

2.1 Extraction of Terms

Herbrand sequents of a sequent S are sequents consisting of instantiations of S which are
quasi-tautologies. The formal definition is:

Definition 4 LetS be aΣ1-sequent as in Definition 1 and let Hi be a finite set of ki -vectors of
terms for every i ∈ {1, . . . , q}. We define a set of quantifier-free formulasFi = {Fi [xi\t]|t ∈
Hi } for each i , and combine them in them in a sequent:

S∗ = (F1 ∪ · · · ∪ Fp → Fp+1 ∪ · · · ∪ Fq)

If S∗ is a quasi-tautology, then S∗ is called a Herbrand sequent of S and the tuple H =
(H1, . . . , Hq) is called a Herbrand structure of S. We define the instantiation complexity of
S∗ as |S∗|i = ∑q

i=1 ki |Hi |.
Note that, in the instantiation complexity of a Herbrand sequent, we count the formulas

weighted by the number of their quantifiers. Formulas inS without quantifiers are represented
by empty tuples in the Herbrand structure (e.g. Hi = {()}), and do not affect the instantiation
complexity as they are weighted by 0.

Example 5 Consider the language containing a constant symbol a, unary function symbols
f, s, a binary predicate symbol P , and the sequent S defined below. We write f n , sn for
n-fold iterations of f and s and omit parentheses around the argument of a unary symbol
when convenient. Let

S = (P(f 4a, a),∀x . f x = s2x,∀xy(P(sx, y) ⊃ P(x, sy)) → P(a, f 4a))

and H = (H1, H2, H3, H4) for

H1 = {()}, H4 = {()}, H2 = {a, f a, f 2a, f 3a},
H3 = {(s3 f 2a, a), (s2 f 2a, sa), (s f 2a, s2a), (f 2a, s3a), (s3a, f 2a), (s2a, s f 2a),

(sa, s2 f 2a), (a, s3 f 2a)}.
Then

F1 = {P(f 4a, a)}, F4 = {P(a, f 4a)},
F2 = { f a = s2a, f 2a = s2 f a, f 3a = s2 f 2a, f 4a = s2 f 3a}
F3 = {P(s4 f 2a, a) ⊃ P(s3 f 2a, sa), P(s3 f 2a, sa) ⊃ P(s2 f 2a, s2a),

123

On the Generation of Quantified Lemmas 99

P(s2 f 2a, s2a) ⊃ P(s f 2a, s3a), P(s f 2a, s3a) ⊃ P(f 2a, s4a),

P(s4a, f 2a) ⊃ P(s3a, s f 2a), P(s3a, s f 2a) ⊃ P(s2a, s2 f 2a),

P(s2a, s2 f 2a) ⊃ P(sa, s3 f 2a), P(sa, s3 f 2a) ⊃ P(a, s4 f 2a)}.
A Herbrand-sequent S∗ corresponding to H is then F1 ∪ F2 ∪ F3 → F4. The instantiation
complexity of S∗ is 20. S∗ is a quasi-tautology but not a tautology.

Theorem 6 (Mid-sequent theorem) Let S be aΣ1-sequent and π a cut-free proof of S. Then
there is a Herbrand sequent S∗ of S s.t. |S∗|i ≤ |π |q |S|l .
Proof This result is proven in [16] (section IV, theorem 2.1) for LK, but the proof for LK=
is basically the same. By permuting the inference rules, one obtains a proof π ′ from π which
has an upper part containing only propositional inferences and the equality rules (which can
be shifted upwards until they are applied to atoms only) and a lower part containing only
quantifier inferences. The sequent between these parts is called mid-sequent and has the
desired properties. ��

S∗ can be obtained by tracing the introduction of quantifiers in the proof, which for every
formula Qx̄i .Fi in the sequent (where Q ∈ {∀, ∃}) yields a set of term tuples Hi , and then
computing the sets of formulas Fi .

The algorithm for introducing cuts described here relies on computing a compressed
representation of a Herbrand structure, which is explained in Sect. 3. Note, though, that the
Herbrand structure (H1, . . . , Hq) is a list of sets of term tuples (i.e. each Hi is a set of tuples
t used to instantiate the formula Fi). In order to facilitate computation and representation,
we will add to the language fresh function symbols f1, . . . , fq . Each fi will be applied to
the tuples of the set Hi , therefore encoding a list of sets of tuples into a set of terms. In this
new set, each term will have some fi as its head symbol that indicates to which formula the
arguments of fi belong.

Definition 7 Let S be a Σ1-sequent as in Definition 1 and let f1, . . . , fq be fresh function
symbols. We then say that the term fi (t) encodes the instance Fi [x\t]. Terms of the form
fi (t) for some i are called decodable.

We refer to the encoded Herbrand structure as the term set of a proof. Conversely, such a
term set defines a Herbrand structure and thus a Herbrand sequent.

Example 8 Using this new notation, the Herbrand structure H of the previous example is
now represented as the set of terms:

T = { f1, f4, f2(a), f2(f a), f2(f
2a), f2(f

3a),

f3(s
3 f 2a, a), f3(s

2 f 2a, sa), . . . , f3(a, s3 f 2a)}

3 Computing Decompositions

Computing a compact representation of the Herbrand structure of a cut-free proof is the first
step in our lemma introduction algorithm.This is accomplishedby computingdecompositions
of a proof’s term set.

Definition 9 (Decomposition) We define a decomposition D as:

U ◦α1 S1 ◦α2 ... ◦αk Sk

123

100 G. Ebner et al.

– αi is a vector of variables of size ni ;
– all of the variables αi j are pairwise different;
– U is a finite set of terms which can contain all variables from α1, ..., αk

– Si is a finite set of term vectors of size ni ;
– the terms in Si ’s vectors may only contain the variables from αi+1, ..., αk (consequently,

Sk contains only ground terms).

The language of D is L(D) = {u[α1\s1]...[αk\sk] | u ∈ U and si ∈ Si }. For a finite set
of ground terms T , we say that D covers T , or equivalently that D is a decomposition of T ,
iff L(D) ⊇ T . Finally, the size |D| of a decomposition is defined as |U | + ∑k

i=1 ni |Si |.
Note that in the definition of covering above, we only require that L(D) is a superset of

T and not that it is equal to T . This requirement is motivated by a property of Herbrand
sequents: every supersequent of a Herbrand sequent is a Herbrand sequent as well. This
relaxed requirement allows us to consider more decompositions for a given term set, and
hence obtain a stronger compression. We aim to find a decomposition of minimal size that
covers a given term set T .

The notion of decomposition in Definition 9 is stated purely on the level of formal lan-
guages, without any references to proofs or formulas or Herbrand sequents. The algorithms
we present in this section will likewise not be concerned with proofs, and compute decompo-
sitions based purely on the set of terms they get as input. Unfortunately not all decompositions
can be decoded into quantifier instances of a proof with cut—however a very slight restriction
on the decomposition suffices to ensure that this is nevertheless possible:

Definition 10 Let S be a Σ1-sequent. Then a decomposition D = U ◦α1 S1 ◦α2 · · · ◦αk Sk is
called decodable (for S) iff every term u ∈ U is decodable.

Recall that a term u is decodable iff it is of the form fi (t) for some i . Regarding only the size
of the decomposition, this is no restriction at all. We can always transform a non-decodable
decomposition into a decodable one, without increasing its size. The crucial property here is
that the function symbols fi only appear as the root symbols of terms in T , and not inside
the terms.

Lemma 11 Let T be a finite set of ground terms, and D a decomposition of T . Then there
exists a decomposition D′ of T such that |D′| ≤ |D| and ni = 1 for all i .

Proof We replace every ◦αi Si in the decomposition with ◦αi,1 π1(Si) · · ·◦αi,ni
πni (Si), where

πm is the m-th projection. That is, instead of substituting all the variables in αi at once, we
substitute them one by one. The size of decomposition does not increase since we multiplied
the number of elements in Si by ni . ��
Lemma 12 Let π be a cut-free proof, T its term set, and D a decomposition of T . Then there
exists a decodable decomposition D′ of T such that |D′| ≤ |D|.
Proof Without loss of generality assume ni = 1 for all i , and letU ◦α1 S1 ◦α2 · · · ◦αk Sk = D.
Define U ′ = {u ∈ U ∪ S1 ∪ · · · ∪ Sk | ∃i u = fi (. . .)}, S′

i = Si \ U ′ for 1 ≤ i ≤ k,
and set D′ = U ′ ◦α1 S′

1 ◦α2 · · · ◦αk S′
k , leaving out any S′

i where S′
i = ∅. The size of the

decomposition does not increase with this transformation. We need to show that L(D) ⊇ T ,
so let t = u[α1\s1, . . . , αk\sk] ∈ T where u ∈ U , and si ∈ Si for all i . If u is of the
form fi (. . .), then any si such that si ∈ U ′ is irrelevant since it does not contribute to t . If
Si \U ′ = ∅, then we leave them out, otherwise we replace them by an arbitrary other s′

i ∈ S′
i .

On the other hand, if u = α j for some j , then we change u to u′ = s j ∈ U ′ and leave out or
replace the remaining si as before. ��

123

On the Generation of Quantified Lemmas 101

We can also formulate the problem of finding a minimal decomposition as a decision
problem: given a finite set of ground terms T and m ≥ 0, is there a decomposition D of T
such that |D| ≤ m? This problem is in NP: given a decomposition D, and for every term
t ∈ T the necessary substitutions, we can check in polynomial time whether the language
covers T . We conjecture that the problem is NP-hard as well.

Definition 13 An algorithm to produce decompositions takes as input a finite set of ground
terms T , and returns a decomposition D = U ◦α1 S1 ◦α2 · · · ◦αk Sk of T . Such an algorithm
is called complete iff it always returns a decomposition of minimal possible size.

We will now present an incomplete but practically feasible solution to find small decom-
positions for a term set. Our algorithm is based on an operation called Δ-vector. Intuitively,
it computes “greedy” decompositions U ◦ S with only one element in the set U . We will
call those simple decompositions. They are stored in a data structure called Δ-table, which
is later processed for combining simple decompositions into more complex ones.

A previous version of this algorithm was presented in [17]. Since then, we have identified
its source of incompleteness and implemented the so-called rowmerging heuristic for finding
more decompositions. Additionally, many bugs in the implementation were fixed.

3.1 The Δ-vector

Definition 14 Let T be a finite, non-empty set of terms, u a term and S a set of substitutions.
Then (u, S) is a simple decomposition of T iff uS = {uσ | σ ∈ S} = T . Additionally, (u, S)

is called trivial iff u is a variable.

Example 15 Let T = { f (c, c), f (d, d)}. Then (f (α, α), {[α\c], [α\d]}) is a simple decom-
position of T . Another decomposition of T is (α, {[α\ f (c, c)], [α\ f (d, d)]}), which is
simple and trivial.

Given a non-empty subset T ′ ⊆ T , the Δ-vector for T ′ produces a simple decomposition
of T ′; we write Δ(T ′) = (u, S). This term u is computed via least general generalization,
a concept introduced independently in [25,26] and [28]. The least general generalization of
two terms is computed recursively:

Definition 16 Let αt,s be a different variable for each pair of terms (t, s).

lgg(f (t1, . . . , tn), f (s1, . . . , sn)) = f (lgg(t1, s1), . . . , lgg(tn, sn))

lgg(t, s) = αt,s otherwise

Example 17 Let f, a, and b be constants, and g a binary function symbol, then
lgg(f, g(a, b)) = α1, lgg(g(a, b), g(b, a)) = g(α1, α2), lgg(g(a, b), g(a, a)) = g(a, α1),
and lgg(g(a, a), g(b, b)) = g(α1, α1).

To have a canonical result term, we use the names α1, . . . , αn for the variables in lgg(t, s),
read left-to-right. The lgg subsumes each of the arguments: given terms t and s, there always
exist substitutions σ and τ such that lgg(t, s)σ = t and lgg(t, s)τ = s. The lgg operation is
associative and commutative as well, and we can naturally extend it to finite non-empty sets
of terms:

Definition 18 Let T = {t1, . . . , tn} be a non-empty finite set of terms. We define its least
general generalization lgg(T) using the binary lgg operation:

lgg{t1} = t1

lgg{t1, . . . , tn} = lgg(t1, lgg(t2, . . . lgg(tn−1, tn))) if n ≥ 2

123

102 G. Ebner et al.

Example 19 Let a and b be constants, f a unary and g a binary function symbol, then
lgg{ f (a)} = f (a), lgg{ f (a), f (b)} = f (α1), and lgg{ f (a), f (b), g} = α1. Additionally
let l = lgg{g(a, a), g(b, b), g(f (b), f (b))} = g(α1, α1)}, then l subsumes each of the three
arguments: l[α1\a] = g(a, a), l[α1\b] = g(b, b), l[α1\ f (b)] = g(f (b), f (b)),

Just as in the binary case, the lgg always subsumes it arguments: for each t ∈ T ′, there
exists a substitution σt such that lgg(T ′)σt = t . We can now define the Δ-vectors in terms
of the lgg:

Definition 20 Let T ′ be a finite, non-empty, set of ground terms. Then we define its Δ-
vector as Δ(T ′) = (lgg(T ′), {σt | t ∈ T ′}), where for every t ∈ T ′ the substitution σt
satisfies lgg(T ′)σt = t .

Example 21 Let T ′ = { f (c, c), f (d, d)}, then Δ(T ′) = (f (α1, α1), {[α1\c], [α1\d]}).
Algebraically, we can consider the set of terms where we identify terms up to variable

renaming. This set is partially ordered by subsumption and the lgg computes the meet opera-
tion, making it a meet-semilattice. In this semilattice, terms have a least upper bound iff they
are unifiable; the join operation is given by most general unification.

The subset of terms with at most one variable is such a semilattice as well: every pair of
two terms has a greatest lower bound. From this point of view, we can also define a function
lgg1 as the meet operation in the subsemilattice of terms with at most one variable. We may
then define a variant Δ1(T) = (u, S) of the Δ-vector, where u may contain only a single
variable. We will compare both variants of the Δ-vector in the large-scale experiments in
Sect. 6.2.

3.2 The Δ-table

The Δ-table is a data-structure that stores all non-trivial Δ-vectors of subsets of T , indexed
by their sets of substitutions. Some of these simple decompositions are later combined into
a decomposition of T .

Definition 22 A Δ-row is a pair S → U where S is a set of substitutions, and U is a set of
pairs (u, T) such that uS = T . A Δ-table is a map where every key-value pair is a Δ-row.

Algorithm 1 computes a Δ-table containing the Δ-vectors for all subsets of T . As an
optimization, we do not iterate over all subsets. Instead we incrementally add terms to the
subset, stopping as soon as the Δ-vector is trivial. This optimization is justified by the
following lemma:

Theorem 23 Let T be a set of terms. If Δ(T) is trivial, then so is Δ(T ′) for every T ′ ⊇ T .

Proof Let Δ(T) = (u, S) and Δ(T ′) = (u′, S′). By the subsumption property of the lgg,
there is a substitution σ such that u′σ = u. So if u is a variable, then u′ is necessarily a
variable as well. ��

Whenever a subset T ′ of T has a trivial decomposition, i.e. Δ(T ′) = (α1, T ′), it is not
added to the Δ-table. Moreover, no superset of T ′ is considered from this point on, since we
know that these will also have only trivial decompositions.

After having computed theΔ-table, we need to combine the simple decompositions to find
a suitable one, i.e., generating the full set T . Since we did not add trivial decompositions, each

123

On the Generation of Quantified Lemmas 103

Algorithm 1 Δ-table algorithm
function Populate(M : Δ-table, L: list of terms, T : set of terms)

if L is non-empty then
T ′ ← T ∪ {Head(L)}
(u, S) ← Δ- vector(T ′)
if u is not a variable then

M[S] ← M[S] + (u, T ′)
Populate(M,Tail(L), T ′)

end if
Populate(M,Tail(L), T)

end if
end function
function ComputeDecomposition(T : list of terms)

M ← new Δ-table
Populate(M, T,∅)

if row-merging enabled then
MergeSubsumedRows(M)

end if
CompleteRows(M, T)

return FindMinimalDecomposition(M)

end function

row of the Δ-table is completed with the pairs (t, {t}) for every t ∈ T as a post-processing
step.

Let S → [(u1, T1), ..., (ur , Tr)] be one entry of T ’s Δ-table. We know that Ti ⊆ T and
that {ui } ◦ S is a decomposition of Ti for each i ∈ {1...r}. Take {Ti1 , ..., Tis } ⊆ {T1, ..., Tr }
such that Ti1 ∪ ... ∪ Tis = T . Then, since combining each ui j with S yields Ti j , and the
union of these terms is T , the decomposition {ui1 , ..., uis } ◦ S will generate all terms from T .
Observe that the vector of variables α used will be the same for all combined decompositions,
since they share the same set S.

There might be several subsets of {T1, ..., Tr } that cover T , so different decompositions
can be found. For our purposes, only the minimal ones are considered. In the end, theΔ-table
algorithm produces a decomposition D of T . If T was the term set of a proof, then D is even
decodable:

Lemma 24 Let π be a cut-free proof, T its term set, and D = U ◦ S the decomposition
produced by the Δ-table algorithm. Then D is decodable.

Proof The Δ-table only contains non-trivial simple decompositions (u, S′) where u is the
lgg of a subset of T . Such a u is necessarily of the form fi (. . .), and hence all u ∈ U are as
well. ��

Decompositions with k > 1 The algorithm shown (and implemented in GAPT, see Sect. 6)
computes only decompositions of the shape U ◦α S, i.e., with k = 1 (see Definition 9). In
order to generate more general decompositions, we would have to run it again on the set U ,
treating all variables in α as constants.

The experiments with the simpler algorithm have given satisfying results so far, evenwhen
compared to another approach which finds more general decompositions (see Sect. 3.4).
We have thus decided to postpone the analysis and implementation of an iterated Δ-table
method.

123

104 G. Ebner et al.

3.3 Incompleteness and Row-Merging

The proposed algorithm is incomplete because it only combines simple decompositions
from the same line of theΔ-table (i.e., with the same set S). Completeness could be achieved
by combining decompositions regardless of where they occur in the table. As an example,
consider the set T = Tr ∪ Ts , |T | = 18, where:

Tr = {rc, r f c, r f 2c, ..., r f 8c}
Ts = {sd, sgd, sg2d, ..., sg8d}

Considered separately, sets Tr and Ts have concise decompositions of size 6:

{rαr , r f 3αr , r f 6αr } ◦αr {c, f c, f 2c}
{sαs, sg

3αs, sg
6αs} ◦αs {d, gd, g2d}

The Δ-table algorithm will find the elements to assemble both decompositions, but since
it only combines those that have a common right-hand side, these will never be combined to
obtain the following decomposition of size 12:

{rαr , r f 3αr , r f 6αr , sαs, sg
3αs, sg

6αs} ◦αr ,αs {c, f c, f 2c, d, gd, g2d}
Nevertheless, the complexity of a complete algorithm makes it unfeasible. We are inves-

tigating ways to make it “more complete” by operations that would not compromise its
efficiency so much.

One approach to improve the completeness of the Δ-table algorithm is to merge rows in
the table. Consider the following term set T and its decomposition D:

T = T1 ∪ T2 ∪ T3

T1 ={q(a, b, c), q(b, c, a), q(c, a, b)}
T2 ={r(a, b, c), r(b, c, a), r(c, a, b)}
T3 ={s(a, b), s(b, c), s(c, a)}
D ={q(α1, α2, α3), r(α1, α2, α3), s(α1, α2)}

◦{(a, b, c), (b, c, a), (c, a, b)}
This decomposition will never be found as the substitutions in the Δ-vector do not match

— in one case we have a substitution of two variables, in the other three variables. In par-
ticular the Δ-table will contain the following two rows (for space reasons, we abbreviate
[α1\a, α2\b, α3\c] as [a, b, c]):

{[a, b, c], [b, c, a], [c, a, b]} → {(q(α1, α2, α3), T1), (r(α1, α2, α3), T2)}
{[a, b], [b, c]} → {(s(α1, α2), T3)}

If we could just put the contents of the second row into the first one, then wewould find the
desired decomposition immediately. Intuitively, the reason we can merge the rows without
violating the invariant of theΔ-table algorithm is because the substitutions of the second row
are in a sense contained in the substitutions of the first row. The following definition makes
this intuition precise:

Definition 25 (Substitution-set subsumption) Let S1, S2 be sets of substitutions, and D1, D2

be sets of variables such that dom(τ) ⊆ Di for all τ ∈ Si and i ∈ {1, 2}. Then S1 subsumes

123

On the Generation of Quantified Lemmas 105

S2, written S1 � S2, if and only if there exists an injective substitution σ : D1 → D2 with
the following property:

∀τ1 ∈ S1 ∃τ2 ∈ S2 ∀x ∈ D1 xτ1 = xστ2

Lemma 26 (row-merging) Let S1 → R1 and S2 → R2 be Δ-rows, and S1 � S2 with the
substitution σ witnessing this subsumption. Then S2 → (R2 ∪ R1σ) is a Δ-row as well.

Proof Let (u, T ′) ∈ R1. We need to show that uσ S2 = T ′. But this follows from uS1 = T ′
since S1 � S2 via σ . ��

After the initial computation of the Δ-table, we use this lemma to merge all pairs of rows
where one set of substitutions subsumes the other. Whenever we have rows S1 → R1 and
S2 → R2 such that S1 � S2, we replace S2 → R2 by S2 → R2 ∪ R1σ and keep the S1
row as it is. This increases the set of possible decompositions that we can find, since we did
not remove any elements of the rows. This allows to find the desired decomposition in the
example. We have {[a, b], [b, c]} � {[a, b, c], [b, c, a], [c, a, b]} via the identity substitution
[α1\α1, α2\α2], and generate the following new row:

{[a, b, c], [b, c, a], [c, a, b]} → {(q(α1, α2, α3), T1), (r(α1, α2, α3), T2), (s(α1, α2), T3)}
3.4 The MaxSAT-Algorithm

In [12], the authors propose an algorithm for the compression of a finite set of terms by
reducing the problem (in polynomial time) to Max-SAT. This is another method for finding a
decomposition. The difference to theΔ-table algorithm is that one must provide the numbers
k and |α1|, ..., |αk | in advance.

Using the reduction to Max-SAT to find decompositions is, in principle, a complete algo-
rithm, meaning that it finds all decompositions in the shape specified by the parameters. But
this requires finding all possible solutions for the generated Max-SAT problems. In addi-
tion, due to the number of variables in the generated problem, it is hardly feasible to find
decompositions for k > 2.

Given the limitations of both algorithms, their practical performance in terms of com-
pressing proofs is comparable. Having both implementations is justified since the methods
find different decompositions and therefore generate different cut formulas.

4 Computing Cut Formulas

After having computed a decompositionU ◦ S1 ◦ ...◦ Sn as described in Sect. 3, the next step
is computing cut formulas based on that decomposition. A decomposition D specifies the
instances of quantifier blocks in a proof with ∀-cuts (both for end-sequent and cut formulas),
but does not contain information about the propositional structure of the cut formulas to be
constructed.

The set U in the decomposition corresponds to the instances of formulas in the end-
sequent, the sequent SU in the following Definition 27 consists precisely of these instances.
The sequents S i

U will simplify the definition of the proof with cut—the definition of S i
U is

motivated by the eigenvariable condition: the instances in S i
U are precisely those which may

occur at a point where the eigenvariables α1, . . . , αi have been introduced below.

123

106 G. Ebner et al.

Definition 27 Let S be a Σ1-sequent and Fi , ki as in Definition 1, and D = U ◦α1 S1 ◦α2

· · · ◦αn Sn a decodable decomposition. We define the sequent SU = FU,1, . . . ,FU,p →
FU,p+1, . . . ,FU,q , where FU,i = {Fi [xi\t] | fi (t) ∈ U }.

In addition, we define for every 0 ≤ j ≤ n the sequent S j
U as follows: S j

U consists of all
formulas F ∈ SU such that the free variables of F are included in α j , . . . , αn .

Example 28 Consider the sequent S = P(c),∀x .(P(x) ⊃ P(s(x)) → P(s6c), its Herbrand
sequent H = P(c), P(c) ⊃ P(sc), . . . , P(s5c) ⊃ P(s6c) → P(s6c), and the decomposi-
tion D = U ◦ S:

U = { f1, f2(α), f2(sα), f2(s
2α), f3}

S = {c, s3c}
Now SU contains the instances of S as specified by U , without the function symbols

f1, f2, f3, and the sequents S1
U and S2

U contain the formulas with the appropriate free vari-
ables:

SU = P(c), P(α) ⊃ P(sα), P(sα) ⊃ P(s2α), P(s2α) ⊃ P(s3α) → P(s6c)

S1
U = SU

S2
U = P(c) → P(s6c)

Given a decomposition, it may be impossible to incorporate some formulas as cut formulas
in a proof with the quantifier inferences indicated by the decomposition. For example, in
most cases we will not be able to use ∀α1.⊥ as a cut formula. Definition 30 states the precise
conditions under which given formulas are usable as cut formulas. These conditions are also
precisely the necessary conditions that will later on allow us to build a proof with these
formulas as cuts.

Definition 29 Let S = Γ → Δ and T = Σ → Π be sequents. Then the sequent S ◦ T =
Γ,Σ → Δ,Π is called the composition of S and T .

Definition 30 Let S be a Σ1-sequent, and D = U ◦α1 S1 ◦α2 · · · ◦αn Sn a decodable decom-
position. Moreover, let Si = {w̄i

1, . . . , w̄
i
ki

}, and Xi be a fresh |αi |-ary predicate variable for
1 ≤ i ≤ n. Then the following sequents are called solution conditions:

I0 = S1
U ◦ (→ X1(α1), . . . , Xn(αn))

Ii = S i+1
U ◦ (Xi (w̄

i
1), . . . , Xi (w̄

i
ki) → Xi+1(αi+1), . . . , Xn(αn)) if i > 0

If additionally F1, . . . , Fn are formulas such that the free variables of Fi are contained
in αi , . . . , αn , then the second-order substitution σ = [Xi\λαi .Fi]ni=1 is called a solution if
Iiσ is a quasi-tautology for all 0 ≤ i ≤ n.

Example 31 Let S and D be as in Example 28. Then the solution conditions are as follows:

I0 = S1
U ◦ (→ X (α))

= P(c), P(α) ⊃ P(sα), P(sα) ⊃ P(s2α), P(s2α) ⊃ P(s3α) → X (α), P(s6c)

I1 = P(c), X (c), X (s3c) → P(s6c)

The formula F = P(α) ⊃ P(s3α) forms the solution σ = [X\λα.F], since the following
sequents are quasi-tautological (in this case, they are even tautological):

123

On the Generation of Quantified Lemmas 107

I0σ = P(c), P(α) ⊃ P(sα), P(sα) ⊃ P(s2α), P(s2α) ⊃ P(s3α)

→ P(α) ⊃ P(s3α), P(s6c)

I1σ = P(c), P(c) ⊃ P(s3c), P(s3c) ⊃ P(s6c) → P(s6c)

We can now proceed to give a definition of the proof with cut induced by a decomposition
and a solution.

Definition 32 LetS be aΣ1-sequent, D = U◦α1 S1◦α2 · · ·◦αn Sn a decodable decomposition,
and F1, . . . , Fn be formulas that form a solution. Let the elements of each Si in D be
{w̄i

1, . . . , w̄
i
ki

}. Then the proof with cut πD,F using the decomposition D and solution F is
constructed recursively as follows:

π0
D,F =

(ψ0)

S1
U ◦ (→ F1, . . . , Fn)

S1
U ◦ S ◦ (→ F1, . . . , Fn)

π i
D,F =

(π i−1
D,F)

Si
U ◦ S ◦ (→ Fi , . . . , Fn)

Si+1
U ◦ S ◦ (→ Fi , . . . , Fn)

Si+1
U ◦ S ◦ (→ ∀ᾱi Fi , Fi+1, . . . , Fn)

(ψi)

Si+1
U ◦ (Fi [ᾱi\w̄i

1], . . . , Fi [ᾱi\w̄i
ki

] → Fi+1, . . . , Fn)

Si+1
U ◦ (∀ᾱi Fi → Fi+1, . . . , Fn)

cut
Si+1
U ◦ S ◦ (→ Fi+1, . . . , Fn)

πD,F =
(πn

D,F)

Sn+1
U ◦ S
S

The sub-proofsψ0, . . . , ψn are cut-free proofs of the indicated sequents—these exist since
F is a solution.

The construction in Definition 32 is clearly a proof in LK ending in S. The quantifier
complexity |πD,F |q is bounded by |S|l |U |+∑n

i=1 ai |Si |, where ai is the length of the vector
αi .

Example 33 Continuing Examples 28 and 31, we obtain the following proof with cut πD,F ,
where ψ0 and ψ1 are cut-free proofs of the indicated sequents:

(ψ0)

S1
U ◦ (→ P(α) ⊃ P(s3α))

S ◦ (→ P(α) ⊃ P(s3α))

S ◦ (→ ∀α.(P(α) ⊃ P(s3α)))

(ψ1)

P(c), P(c) ⊃ P(s3c), P(s3c) ⊃ P(s6c) → P(s6c)

P(c),∀α.(P(α) ⊃ P(s3α)) → P(s6c)

S
The question remains whether every decomposition has a solution; we show below that

this is indeed the case if the sequent defined by the term set of the decomposition is quasi-
tautological. The main ingredient in this proof is the definition of a canonical substitution,
which will turn out to be a solution in Theorem 35: the canonical substitution consists of
formulas Ci , such that Ci captures the maximum amount of logical information from the
axioms that is available above the i-th cut.

123

108 G. Ebner et al.

Definition 34 Let D be a decodable decomposition for a Herbrand sequent S∗, and αi , w̄i
j ,

Xi , and SU be as in Definition 30. The formulas Ci are defined recursively as follows:

C1 = ¬SU

Ci+1 =
ki∧

j=1

Ci [αi\w̄i
j]

Then σ = [Xi\λαi .Ci]ni=1 is called the canonical substitution.

We will now show that the canonical substitution is, in fact, a solution.

Theorem 35 Let S be a valid Σ1-sequent and D be a decodable decomposition for some
Herbrand sequent S∗ of S. Then the canonical substitution σ is a solution.

Proof First note that the variable condition is fulfilled as the free variables ofCi are included
in {αi , . . . , αn}. We now need to check that each of the sequents Iiσ is quasi-tautological.
Consider first I0σ = S1

U ◦ (→ C1, . . . ,Cn). Since S1
U = SU and C1 = ¬SU , we only need

to observe that SU ◦ (→ ¬SU) is quasi-tautological.
For 0 < i ≤ n and Iiσ = S i

U ◦ ({Ci w̄
i
j , 1 ≤ j ≤ ki } → Ci+1, . . . ,Cn), we see that

{Ci w̄
i
j , 1 ≤ j ≤ ki } is equivalent to Ci+1, and only need to show that S i

U ◦ (Ci+1 →
Ci+1, . . . ,Cn) is quasi-tautological, which is clear in the case i < n. For i = n it suffices
to show that Cn+1 → is quasi-tautology: this is true since the sequent defined by the term
set of D is quasi-tautological, and Cn+1 → is logically equivalent to the Herbrand sequent
represented by the term set. ��

The cut formulas corresponding to the canonical solution are

∀α1 C1, . . . ,∀αn Cn

Example 36 Applying Theorem 35 to our running example, we obtain the canonical substi-
tution σ = [X\λαC1]:
C1 = P(c) ∧ (P(α) ⊃ P(sα)) ∧ (P(sα) ⊃ P(s2α)) ∧ (P(s2α) ⊃ P(s3α)) ∧ ¬P(s6c)

The cut formula corresponding to the canonical substitution is ∀α.C1.

5 Improving the Solution

After completing the first phase of cut-introduction, namely the computation of a decomposi-
tion, the next step is to find a solution to the schematic extended Herbrand sequent induced by
the decomposition. Such a solution is guaranteed to exist by Theorem 35, and its construction
is described in Definition 34. But is this solution optimal? The canonical solution as defined
in Sect. 4 is relatively large, in general even exponential in the size of the decomposition.
As a first step towards a smaller solution, we consider a slightly less elegant version of the
canonical solution with lower logical complexity:

Definition 37 Let D be a decodable decomposition for a sequent S, and let αi , w̄i
j , Xi , and

SU be as in Definition 30. Furthermore let the formulas C ′
i be defined recursively as follows,

where (Γ → Δ) \ (Π → Λ) = (Γ \ Π) → (Δ \ Λ) denotes the difference operation on
sequents:

123

On the Generation of Quantified Lemmas 109

C ′
1 = ¬(S1

U \ S2
U)

C ′
i+1 = ¬(S i+1

U \ S i+2
U) ∧

ki∧

j=1

Ci [αi\w̄i
j]

Then σ ′ = [Xi\λᾱi .C ′
i]ni=1 is called the modified canonical substitution.

The “regular” canonical solution introduces all instances immediately in C1. By contrast,
the modified canonical solution introduces instances as late as possible. Purely propositional
instances are never included.

Theorem 38 LetS be aΣ1-sequent and D be a decodable decomposition for someHerbrand
sequent S∗ of S. Then the modified canonical substitution σ ′ is a solution.

Proof Similar to the proof of Theorem 35. ��
If we approach the question of optimality from the point of view of the | · |q measure, then

all solutions can be considered equivalent. From the point of view of symbolic complexity or
logical complexity, things may be different: there are cases where the canonical solution is
large, but small solutions exist. The following example exhibits such a case. In this example, a
smaller solution not only exists, but is also more natural than (and hence in many applications
preferable to) the canonical solution.

Example 39 Consider the sequent

S : Pa,∀x (Px ⊃ P f x) → P f 9a.

Then S has a (minimal) Herbrand-sequent

H : Pa, Pa ⊃ P f a, . . . , P f 8a ⊃ P f 9a → P f 9a.

The terms of this Herbrand-sequent are represented by the decomposition

D = U ◦ W = {α, f α, f 2α} ◦ {a, f 3a, f 6a}
which gives rise to the solution conditions:

I0 = Pa, Pα ⊃ P f α, P f α ⊃ P f 2α, P f 2α ⊃ P f 3α → Xα, P f 9a.

I1 = Pa, Xa, X f 3a, X f 6 → P f 9a.

The corresponding canonical solution is σ = [X\λα.C] with
C = Pa ∧ (Pα ⊃ P f α) ∧ (P f α ⊃ P f 2α) ∧ (P f 2α ⊃ P f 3α) ∧ ¬P f 9a.

But there also exists a much simpler solution; we just take θ = [X\λα.A] with
A = Pα ⊃ P f 3α.

Since the solution for the schematic extended Herbrand sequent is interpreted as the lemmata
that give rise to the proof with cuts, and these lemmata will be read and interpreted by humans
in applications, it is important to consider the problem of improving the logical and symbolic
complexity of the canonical solution. Furthermore, a decrease in the logical complexity of a
lemma often yields a decrease in the length of the proof that is constructed from it.

In the following sections, we describe a method which computes small solutions for
schematic Herbrand sequents induced by decompositions. The method is incomplete (in the

123

110 G. Ebner et al.

sense that a solution of minimal complexity is missed) but efficient. It is based on resolution
and paramodulation.

We start by investigating the case of a single Π1-cut (Sect. 5.1). Similar results have been
presented already in [19]. For simplicity of presentation we consider a fixed sequent:

S = ∀x̄ F(x̄) →
although the results can be extended to more general end-sequents as in Sect. 4. The problem
of improving the canonical solution concerns a quantifier-free formula, hence, in the sequel,
the variable vector ᾱ is to be interpreted as a vector of constant symbols. All formulas are
quantifier-free unless otherwise noted.

5.1 On the Solutions for a Single Π1-Cut

We start to study the problem of simplifying the canonical solution by looking at the case of
1-decompositions U ◦ W , for

U = { f1(u1), . . . , f1(um)}, W = {s1, . . . , sk},
which gives rise to proofs with a single Π1-cut. In the setting of 1-decompositions, an
arbitrary solution is of the form [X\λα.A]. Throughout this section, we consider a fixed
1-decomposition U ◦ V , along with the solution conditions I

Γ → Xα,

Γ ′, Xs1, . . . , Xsk →,

for Γ = F[x̄\u1], . . . , F[x̄\um] and Γ ′ being a subset of Γ . We also consider the canonical
solution

σ = [X\λᾱ.C] = [X\λᾱ.

m∧

i=1

F[x̄\ui]].

If [X\λᾱ.A] is a solution for I, we will say simply that A is a solution.
The first basic observation is that solvability is a semantic property. The following is an

immediate consequence of Definition 30.

Lemma 40 Let A be a solution, B a formula and |� A ⇔ B. Then B is a solution.

Hence we may restrict our attention to solutions which are in conjunctive normal form
(CNF). Formulas in CNF can be represented as sets of clauses, which in turn are sets of
literals, i.e. possibly negated atoms. It is this representation that we will use throughout this
section, along with the following properties: for sets of clauses A, B, A ⊆ B implies B |� A,
and for clauses C, D, C ⊆ D implies C |� D.

Note that the converse of the Lemma above does not hold: given a solution A there may
be solutions B such that �A ⇔ B. We now turn to the problem of finding such solutions. In
Example 39, we observe that that C |� A (but A�C). We can generalize this observation to
show that the canonical solution is most general.

Lemma 41 Let C be the canonical solution and A an arbitrary solution. Then C |� A.

Proof Since ϑ = [X\λᾱ.A] is a solution for I, the sequent F[x\u1], . . . , F[x\um], A ⊃∧k
j=1 A[ᾱ\s j] → is E-valid. By definition, C = ∧m

i=1 F[x̄\ui], and therefore C, A ⊃
∧k

j=1 A[ᾱ\s j] → is E-valid, hence C → A is E-valid. ��

123

On the Generation of Quantified Lemmas 111

This result states that any search for simple solutions can be restricted to consequences of the
canonical solution. Unfortunately, due to equality in our language, there are infinitely many
consequences. Even enumerating all consequences bounded by a fixed bound on symbol size
would be computationally infeasible. Towards a more efficient iterative method, we give a
criterion that allows us to disregard some of those consequences.

Lemma 42 If A |� B then

(1) If Γ ′, A[ᾱ\s1], . . . , A[ᾱ\sk] → is not E-valid, then B is not a solution.
(2) If A is a solution then Γ → B is E-valid.
(3) If A is a solution, thenΓ ′, B[ᾱ\s1], . . . , B[ᾱ\sk] → is E-valid iff [X\λᾱ.B] is a solution

of I.

Proof For (1), we will show the contrapositive. By assumption, we have that
Γ ′, B[ᾱ\s1], . . . , B[ᾱ\sk] → is E-valid. Since A |� B, we find that furthermore
Γ ′, A[ᾱ\s1], . . . , A[ᾱ\sk] → is E-valid. For (2) it suffices to observe that since A is a
solution Γ → A is E-valid, and to conclude by A |� B. (3) is then immediate by definition.

��
Lemma 43 (Sandwich Lemma) Let A, B be solutions and A |� D |� B. Then D is a
solution.

Proof By Lemma 42 (2), the first solution condition Γ → D is E-valid. The second solution
condition D[ᾱ\s1], . . . , D[ᾱ\sk], Γ → is E-valid by Lemma 42 (1). ��
5.2 Simplification by forgetful inference

In this section we define a method to simplify solutions which is based on resolution and
paramodulation. The idea behind it is to generate solutions of smaller size by forgetful infer-
ence, i.e. if we derive F from F1, F2 we replace F1, F2 by F . This principle of inference is
sound but obviously incomplete. The method is also incomplete in the sense that it might
fail to produce the shortest solution; however it proved very useful in practice and is part of
our implementation. From now on we assume that the formulas are in clause form, i.e. they
are represented as finite sets of clauses (and clauses are considered as finite sets of literals).
We may also assume that the clauses are ground (in particular we consider variables from ᾱ

as constants). Therefore the principles of resolution and paramodulation used below do not
require unification.

Definition 44 (simplification) Let C be a set of ground clauses. We define

• C �r C′ if C′ = (C \ {C1,C2}) ∪ {R}, where C1,C2 ∈ C, C1 �= C2 and R is a resolvent
of C1 and C2 which is not a tautology.

• C�pC′ if C′ = (C\{C1,C2})∪{R}, whereC1,C2 ∈ C,C1 �= C2 and R is a paramodulant
of C1 and C2 which is not a tautology.

• C �s C′ if either C �r C′ or C �p C′.

If there exists no C′ s.t. C �s C′ we say that C is in normal form.

The principle defined above simply consists in generating a resolvent or a paramodulant
and afterwards deleting the parent clauses. By solving a set of solution conditions with
variables X1, . . . , Xn we obtain a canonical solution of the form

[X1 \ λα1.C1, . . . , Xn \ λαn .Cn].

123

112 G. Ebner et al.

Then the clause forms Ci of the formulas Ci represent the i-th cut formula. We represent the
cut formulas obtained so far as a tuple (C1, . . . , Cn). To simplify all the cut formulas we have
thus to extend the relation �s to tuples of clause sets.

Definition 45 Let (C1, . . . , Cn), (D1, . . . ,Dn) be tuples of clause sets for n ≥ 1. We define
(C1, . . . , Cn) �s (D1, . . . ,Dn) if there exists an i ∈ {1, . . . , n} s.t. Ci �s Di and for all j ≤ n
and j �= i we have D j = C j .

Proposition 46 �s is sound, i.e. if (C1, . . . , Cn)�s (D1, . . . ,Dn) then, for all i ∈ {1, . . . , n},
Ci |� Di .

Proof By the soundness of resolution and paramodulation over equality interpretations we
have that C �r C′ (C �p C′) implies C |� C′. ��
Proposition 47 �s is terminating.

Proof Assume that (C1, . . . , Cn) �s (D1, . . . ,Dn). Then there exists an i such that Ci �s Di

and, by definition of �s , |Ci | > |Di |; for j �= i we have C j = D j . So if we define

‖(C1, . . . , Cn)‖ =
n∑

i=1

|Ci |

we obtain ‖(C1, . . . , Cn)‖ > ‖(D1, . . . ,Dn)‖ and thus �s is terminating.

Remark 48 �s is not confluent: consider e.g.

C = {{P(α1), Q(α1)}, {¬P(α1), Q(α1)}, {¬Q(α1)}}.
Then, clearly, C �s {{Q(α1)}, {¬Q(α1)}} and C �s {{P(α1), Q(α1)}, {¬P(α1)}}. But

there exists no C′ s.t.

{{Q(α1)}, {¬Q(α1)}} �∗
s C′ and {{P(α1), Q(α1)}, {¬P(α1)} �∗

s C′.

C has in fact the two different normal forms {{}} and {{Q(α1)}}.
Example 49 Let

C1 = {{α1 = α2}, {P(α1), Q(α1)}, {¬P(α1)}},
C2 = {{ f (α2) = α2}, {¬P(f (α2)), R(α2)}, {P(α2)}}.

Then

C1 �p {{P(α2), Q(α1)}, {¬P(α1)}},
C1 �r {{α1 = α2}, {Q(α1)}} �p {{Q(α2)}} and therefore

C1 �s {{P(α2), Q(α1)}, {¬P(α1)}}, C1 �∗
s {{Q(α2)}}.

For C2 we obtain

C2 �p {{¬P(α2), R(α2)}, {P(α2)}} �r {{R(α2)}} and
C2 �p {{¬P(f (α2)), R(α2)}, {P(f (α2))}} �r {{R(α2)}}.

We define a normal form computation on the tuple (C1, C2):

(C1, C2) �s ({{α1 = α2}, {Q(α1)}}, C2) �s

({{α1 = α2}, {Q(α1)}}, {{¬P(α2), R(α2)}, {P(α2)}}) �s

({{α1 = α2}, {Q(α1)}}, {{R(α2)}}) �s ({{Q(α2)}}, {{R(α2)}}).
We thus get the normal form ({{Q(α2)}}, {{R(α2)}}) of (C1, C2) under �s . Note that
({{P(α2), Q(α1)}, {¬P(α1)}}, {{R(α2)}}) is another normal form.

123

On the Generation of Quantified Lemmas 113

Below we define the set of simplified solution tuples for a set of solution conditions.

Definition 50 (Solution tuple)LetI be a set of solution conditionswith variables X1, . . . , Xn

and let

Θ : [X1 \ λα1.D1, . . . , Xn \ λαn .Dn]
be a solution of I. LetDi be clause forms of Di for i = 1, . . . , n. Then we call (D1, . . . ,Dn)

a solution tuple of I. If Θ is the canonical solution we call (D1, . . . ,Dn) the canonical
solution tuple of I.

Definition 51 (Set of simplified solutions) Let I be a set of solution conditions. Then we
define the set of simplified solutions Sols(I) by:

– the canonical solution tuple of I is in Sols(I),
– if Ψ ∈ Sols(I), Ψ �s Ψ ′ and Ψ ′ is a solution tuple of I then Ψ ′ ∈ Sols(I).

Proposition 52 Let I be a set of solution conditions. Then Sols(I) is a finite set of solution
tuples of I and Sols(I) is computable.

Proof Sols(I) is finite as, for the canonical solution tuple Ψ0, there are only finitely many
Ψ s.t. Ψ0 �∗

s Ψ (note that, by Proposition 47, �s is terminating). It is computable because it
is decidable whether a given tuple of clause sets Ψ is a solution tuple of I. ��

There are various ways to extract solution tuples from the set Sols(I). We can either
compute a minimal Ψ , i.e. a Ψ ∈ Sols(I) s.t. either all components of Ψ are in normal form
orΨ �s Ψ

′ implies thatΨ ′ is not a solution anymore. Or we can compute all minimal solution
tuples Ψ ∈ Sols(I) and select those of minimal logical complexity.

Our implementation iteratively finds one minimal solution in Ψ ∈ Sols(I): we start from
the canonical solutionΨ = (D1, . . . , Dn) ∈ Sols(I).We process the components of the tuple
from right to left, starting at Dn . In each step we minimize one component of the solution
tuple, computing all �s-simplifications, picking one minimal simplification, and replacing
that component by the simplification. Performing a simplification at one component preserves
the minimality of the components to the right, so we produce a minimal solution after one
loop.

There are several heuristicswhichmay further improve the algorithm.One straightforward
(but expensive) strategy is to delete a single clause in the clause form and to check whether
the formula is still a solution; this feature is built in but is not used in the tests. Another
(better) one is to eliminate clauses in the CNF-form which do not contain variables from ᾱ.
The example below illustrates advantages and potential problems with this heuristic.

Example 53 Let A be a solution in CNF and construct A′ from A by removing all clauses
that do not contain variables from ᾱ. Then we have to check whether A′ is a solution.

Let S = (∀x .F(x) →) = (∀x((Pa ∧ (Px ⊃ P f (x))) ∧ ¬P f 3(a)) →)
and U ◦ W a

1-decomposition (of { f1(a), f1(f (a)), f1(f 2(a))}) for
U = { f1(α), f1(f (α))}, W = {a, f (a)}.

and let Γ = F(α), F(f (α)). Then the corresponding solution system is

Γ → Xα,

Xa, X f (a) → .

123

114 G. Ebner et al.

The canonical solution is F(α) ∧ F(f (α)), its CNF being

Pa ∧ (¬Pα ∨ P f (α)) ∧ (¬P f α ∨ P f 2(α)) ∧ ¬P f 3(a).

Note that the formula

G(α) : (¬Pα ∨ P f (α)) ∧ (¬P f α ∨ P f 2(α))

obtained after removing the α-free clauses is not a solution of Xα, X f (α) →!
However if we choose the logically equivalent version

S ′ : P(a),∀x(P(x) ⊃ P(f (x))) → P(f 3(a))

and the same decomposition U ◦ W we obtain the solution system

P(a), P(α) ⊃ P(f (α)), P(f (α) ⊃ P(f 2(α)) → P(f 3(a)), Xα

P(a), Xa, X f (a) → P(f 3(a)).

For the system above G(α) is indeed a solution. In the last system α-parts and α-free parts
are cleanly separated while in the first one this is not the case. We see that the efficiency
of the strategy to eliminate α-free clauses depends on the syntactic form of the prob-
lem.

The example below illustrates the procedure of computing a minimal solution from a
canonical solution tuple.

Example 54 Let S be the sequent

Pa,∀x . f x = s3x, ∀x(Px ⊃ P(sx)) → P(f 3a).

S has a Herbrand sequent H for

H = Γ, P(a), P(a) ⊃ P(sa), . . . , P(s8a) ⊃ P(s9a) → P(f 3a)

where Γ = { f a = s3a, f 2a = s3 f a, f 3a = s3 f 2a}. The instantiation term set T corre-
sponding to S and H is

T : { f1(a), f1(f a), f1(f
2a), f2(a), . . . , f2(f

8a)}.
We define a decomposition D of T by

{ f1(a), f1(f a), f1(f
2a), f2(α), f2(sα), f2(s

2α)} ◦ {a, s3a, s6a}.
The solution conditions corresponding to D are I = {I0, I1} for
I0 = Γ, P(a), P(α) ⊃ P(sα), P(sα) ⊃ P(s2α), P(s2α) ⊃ P(s3α) → Xα, P(f 3a),

I1 = Γ, P(a), Xs3a, Xs6a → P(f 3a).

We have

SU = Γ, P(a), P(α) ⊃ P(sα), P(sα) ⊃ P(s2α), P(s2α) ⊃ P(s3α) → P f 3a.

¬SU is the canonical solution; its clause form is C for

C = {{ f a = s3a}, { f 2a = s3 f a}, { f 3a = s3 f 2a},
{¬P(α), P(sα)}, {¬P(sα), P(s2α)}, {¬P(s2α), P(s3α)}, {¬P(f 3a)}}.

123

On the Generation of Quantified Lemmas 115

We are now simplifying the solution via �s :

C = {{P(a)}, { f a = s3a}, { f 2a = s3 f a}, { f 3a = s3 f 2a},
{¬P(α), P(sα)}, {¬P(sα), P(s2α)}, {¬P(s2α), P(s3α)}, {¬P(f 3a)}}�r

{{P(a)}, { f a = s3a}, { f 2a = s3 f a}, { f 3a = s3 f 2a},
{¬P(α), P(s2α)}, {¬P(s2α), P(s3α)}, {¬P(f 3a)}}�r

{{P(a)}, { f a = s3a}, { f 2a = s3 f a}, { f 3a = s3 f 2a},
{¬P(α), P(s3α)}, {¬P(f 3a)}}�p

{{P(a)}, { f a = s3a}, { f 2a = s3 f a}, {¬P(α), P(s3α)}, {¬P(s3 f 2a)}}�p

{{P(a)}, { f a = s3a}, {¬P(α), P(s3α)}, {¬P(s6 f a)}}�p

{{P(a)}, {¬P(α), P(s3α)}, {¬P(s9a)}}.
{{P(a)}, {¬P(α), P(s3α)}, {¬P(s9a)}} is a normal form under �s and yields the cut
formula

∀x .(P(a) ∧ (¬P(x) ∨ P(s3x)) ∧ ¬P(s9a)).

By deleting α-free clauses we obtain the set of clauses {{¬P(α), P(s3α)}} which yields the
simplified cut formula ∀x(¬P(x) ∨ P(s3x)).

We now illustrate the use of forgetful inference in simplifying a solution for two cut
formulas.

Example 55 Consider the sequent

S : Pa,∀x (Px ⊃ P f x) → P f 8a

which has a Herbrand sequent H generated by the instantiating the quantifier of the second
formula with {a, f a, f 2a, . . . , f 7a}. A corresponding decomposition is

U ◦α1 S1 ◦α2 S2 = { f2(α1), f2(f α1)} ◦ {α2, f 2α2} ◦ {a, f 4a}.
For S and this decomposition we obtain

SU = Pa, Pα1 ⊃ P f α1, P f α1 ⊃ P f 2α1 → P f 8a,

S1U = SU ,

S2U = Pa → P f 8a.

The set of solution conditions is I : {I1, I2, I3} for
I0 = Pa, Pα1 ⊃ P f α1, P f α1 ⊃ P f 2α1 → P f 8a, X1α1, X2α2,

I1 = Pa, X1α2, X1 f
2α2 → P f 8a, X2α2,

I3 = Pa, X2a, X2 f
4a → P f 8a.

The canonical solution of I is

[X1 \ λα1.C1, X2 \ λα2.C1[α1\α2] ∧ C1[α1\ f 2α2]]
for C1 = ¬(Pa ∧ (Pα1 ⊃ P f α1) ∧ (P f α1 ⊃ P f 2α1) ⊃ P f 8a).
We construct the clause forms C1 for C1 and C2 for C1[α1\α2] ∧ C1[α1\ f 2α2]:

123

116 G. Ebner et al.

C1 = {{¬Pα1, P f α1}, {¬P f α1, P f 2α1}, {Pa}, {¬P f 8a}},
C2 = {{¬Pα2, P f α2}, {¬P f α2, P f 2α2}, {Pa}, {¬P f 8a}, {¬P f 2α2, P f 3α2},

{¬P f 3α2, P f 4α2}}.
Therefore the corresponding canonical solution tuple is (C1, C2) and (C1, C2) ∈ Sols(I). Now
we get (C1, C2) �r (C′

1, C2) for

C′
1 = {{¬Pα1, P f 2α1}, {Pa}, {¬P f 8a}}.

But (C′
1, C2) is not a solution tuple forI asI1 is not valid under the corresponding substitution.

The right way to proceed is to simplify the solution for X2 first and then that for X1. So
we compute C2 �r C′

2 for

C′
2 = {{¬Pα2, P f 2α2}, {¬P f 2α2, P f 3α2}, {¬P f 3α2, P f 4α2}, {Pa}, {¬P f 8a}}.

It is easy to check that (C1, C′
2) ∈ Sols(I). Now we define

C′′
2 = {{¬Pα2, P f 2α2}, {¬P f 2α2, P f 4α2}, {Pa}, {¬P f 8a}},

C32 = {{¬Pα2, P f 4α2}, {Pa}, {¬P f 8a}}.
Then (C1, C′

2)�s (C1, C′′
2)�s (C1, C32). Moreover, (C1, C′′

2) ∈ Sols(I) and (C1, C32) ∈ Sols(I).
Indeed we can easily check that

[X1 \ λα1.C1, X2 \ λα2.C32]
is a solution of I.

Now we already know that C1 �r C′
1 and we compute (C1, C32) �s (C′

1, C32), and (this time)
(C′

1, C32) ∈ Sols(I). Neither C′
1 nor C32 can be simplified further and we obtain a minimal

solution (a normal form under �s). This solution yields the cut formulas

∀x((¬Px ∨ P f 2x) ∧ Pa ∧ ¬P f 8a) and

∀x((¬Px ∨ P f 4x) ∧ Pa ∧ ¬P f 8a)

for the proof with cut. A further simplification via elimination of α-free clauses would result
in the cut formulas ∀x(¬Px ∨ P f 2x) and ∀x(¬Px ∨ P f 4x).

Remark 56 Example 55 shows that the simplification must start from the “rear”, i.e. we
must first simplify the solution for Xn , then that for Xn−1 and so on. The reason is that the
simplified formula may be logically weaker and the best place to insert a weaker cut is at the
lowermost cut; here only the right-hand side of the lowermost cut (that means the last solution
condition) has to be checked accordingly. This order of simplification is also implemented
and used for te tests.

5.3 Beautifying the Solution

The minimization procedure defined above takes a solution in conjunctive normal form and
combines some of the clauses into new clauses. These new clauses form the actual non-
analytic content of the lemma that we generate. However, there can be parts of the CNF that
the minimization procedure did not modify—these unmodified parts are then just instances
of formulas in the end-sequent. In addition, some clauses of the minimized solution may
contain literals that already occur in the end-sequent and are hence always true.

123

On the Generation of Quantified Lemmas 117

Example 57 Let us look again at Example 28 from Sect. 4. We had a proof of the following
sequent:

Pc,∀x(Px ⊃ Psx) → Ps6c

And we obtained the following decomposition D together with the canonical substitution
[X\λα C1], from which we got the minimized solution C ′

1:

D = U ◦ S = { f1, f2α, f2sα, f2s
2α, f3} ◦ {c, s3c}

C1 = Pc ∧ (Pα ⊃ Psα) ∧ (Psα ⊃ Ps2α) ∧ (Ps2α ⊃ Ps3α) ∧ ¬Ps6c

C ′
1 = Pc ∧ (Pα ⊃ Ps3α) ∧ ¬Ps6c

However, while minimization managed to simplify the part of the solution that contains the
implications, the two literals Pc and ¬Ps6c still remain unmodified.

In contrast to solution minimization, we will not only modify the solution, but the decom-
position as well. We will first define the operations on the solution, and then show their effect
on the decomposition.

Definition 58 (Beautification)LetS be aΣ1-sequent.We define�S
as and�S

ur as the smallest
relations on sets of clauses satisfying the following:

– C ∪ {C} �S
as C if C is subsumed by a clause in the CNF of ¬S (“axiom subsumption”)

– C∪{C∪{l}}�S
ur C∪{C} if¬l is subsumed by a clause in theCNFof¬S (“unit resolution”)

We then extend these relations to beautification of solutions, defining �S
b to be the smallest

relation such that:

– (C1, . . . , Ci , . . . , Cn) �S
b (C1, . . . , C′

i , . . . , Cn) if Ci �S
as C′

i or Ci �S
ur C′

i ,
– (C1, . . . , Ci−1, {}, Ci+1, . . . , Cn) �S

b (Ci+1, . . . , Cn), and
– (C1, . . . , Ci−1, {{}, . . . }, Ci+1, . . . , Cn) �S

b (C1, . . . , Ci−1, Ci+1, . . . , Cn).

Example 59 We have the solution in CNF F = (C1) where

C1 = {{Pc}, {¬Pα, Ps3α}, {¬Ps6c}}
Here we can apply axiom subsumption twice:

C1 �S
as {{¬Pα, Ps3α}, {¬Ps6c}} �S

as {{¬Pα, Ps3α}}
On the level of the solution we have F �S

b ({{¬Pα, Ps3α}}).
Lemma 60 Let S be a Σ1-sequent. Let F be a solution in CNF for a decomposition D
of a term set corresponding to a Herbrand sequent of S. If F �S

b F ′, then there exists a
decomposition D′ corresponding to a potentially different Herbrand sequent of S such that
F ′ is a solution for D′.

Proof Let F = (C1, . . . , Ci , . . . , Cn), F ′ = (C1, . . . , C′
i , . . . , Cn), and D = U ◦ S1 ◦ · · · ◦

Sn . Depending on the operation, we will add new elements to U . That is, we construct a
decomposition D′ = U ′ ◦ S1 ◦ · · · ◦ Sn such that all the solution conditions are satisfied for
D′ and F ′.

First, consider the case that Ci = C ∪ {C ∪ {l}} �S
ur C ∪ {C} = C′

i . Let u be a term that
describes an instance I of a formula inS such that I implies¬l, and setU ′ = U∪{u}. Assume
without loss of generality that this instance is in the antecedent. Now we have I |� Ci ⊃ C′

i

123

118 G. Ebner et al.

and |� C′
iσ ⊃ Ciσ for any substitution σ . This implies that the solution conditions are still

satisfied.
Now consider the case that Ci = C′

i ∪ {C} �S
as C′

i . Let u be a term that describes an
instance I of a formula in S such that I implies C , and setU ′ = U ∪ (u ◦ Si). Again assume
without loss of generality that the instance is in the antecedent. Here we have |� Ci ⊃ C′

i ,
and Iσ |� C′

iσ ⊃ Ciσ for every σ ∈ Si , hence the solution conditions are satisfied as well. ��
Example 61 After applying axiom subsumption on the clauses {Pc} and {¬Ps6c}, we need
to add the instances f1 and f3 toU . Since these are already present, the decomposition does
not change.

Starting from theminimized solutionC0, we obtain the beautified solution by computing a
Cb such thatC0(�S

b)∗Cb, andCb cannot be further beautified.Weachieve this by exhaustively
reducing the solution using �S

b .

Lemma 62 Let S be a Σ1-sequent. We define the complexity of a solution S = (C1, . . . , Cn)
to be the number of literals, clauses, and formulas contained in the solution: ‖S‖ = ∑n

i=1(1+∑
C∈Ci (1 + |C |)). Then �S

b strictly decreases the complexity of the solution, and is hence
strongly normalizing.

Proof In each reduction, we either remove a literal, a whole clause, or a formula. ��
As a concrete strategy, we first apply axiom subsumption, then unit resolution, and at the

end use the rules for {} and {{}}.

6 Implementation and Experiments

Summing up the previous sections, the structure of our lemma generation method is shown
in Algorithm 2. We have developed an implementation of the lemma generation method
in GAPT, an open-source framework for proof transformations, available at https://logic.at/
gapt, see [14] for a system description. We will now present both a concrete example, as well
as the results of applying our method to the extensive TSTP library of proofs generated by
automated theorem provers.

Algorithm 2 Cut-Introduction
Require: π : cut-free proof
T ← extractTermSet(π)

D ← computeDecomposition(T)

F(x̄) ← canonicalSolution(D)

F(x̄) ← minimizeSolution(F(x̄))
F(x̄) ← beautifySolution(F(x̄))
return constructProof(F(x̄))

6.1 Lattices

It is well known that lattices can be defined in two equivalent ways: either as an algebraic
structure with the operations meet and join, or as a type of partial order. In this section we
will generate a lemma about one direction of this equivalence: starting from a definition of
a lattice as an algebraic structure, we will generate the transitivity and anti-symmetry of the
order as a lemma. This lemma will be introduced as a cut with the formula into a proof of
the following sequent S:

123

https://logic.at/gapt
https://logic.at/gapt

On the Generation of Quantified Lemmas 119

∀x x = x,

∀x∀y∀z (x = y ∧ y = z ⊃ x = z),

∀x∀y (x = y ⊃ y = x),

∀x∀y∀u∀v (x = y ∧ u = v ⊃ f (x, u) = f (y, v)),

∀x∀y∀z f (f (x, y), z) = f (x, f (y, z)),

∀x∀y f (x, y) = f (y, x)

→ f (a, b) = a ∧ f (b, c) = b ∧ f (c, d) = c ∧ f (d, a) = d ⊃ a = b ∧ b = c ∧ c = d

The function symbol f denotes the meet, i.e. the greatest lower bound of two elements.
Hence this sequent states that whenever there is a cycle of four elements a, b, c, and d , where
each is smaller or equal to the next one, then all must be equal. The standard definition of the
partial order of a lattice in terms of its meet operation is x ≤ y iff f (x, y) = x . Proving the
above sequent is the special case n = 4 of Exercise 2 in Birkhoff’s classic textbook on lattice
theory [6]. When expressed in terms of the partial order it is a very natural statement—“the
partial order is acyclic”—with a very natural proof: suppose it is not, then transitivity and
anti-symmetry lead to a contradiction. In the above sequent we phrase this statement in terms
of the meet operation and show how our algorithm expresses the notion of partial order in
terms of the algebraic operations.

We startwith amanually formalized proof ofS.1 As in the sketched solution to the textbook
exercise, this proof first shows transitivity, then anti-symmetry, and finally concludes that
there exists no cycle of length 4.We run our algorithm on the Herbrand structure of this proof
after cut-elimination. The algorithm will recover the two lemmas from just the information
contained in the Herbrand sequent. This case study thus demonstrates how lemmas can
be reflected in the (term-)structure of a Herbrand sequent obtained from eliminating these
lemmas.

The Herbrand sequent S∗ of this cut-free proof has the instantiation complexity |S∗|i =
144, and the extracted term set T contains |T | = 52 terms. In order to find a decomposition
of T , we then apply the Δ-table algorithm described in Sect. 3.2, with row-merging enabled
and an additional small modification: for performance reasons, we remove all entries of
the Δ-table with more than 3 variables—these entries correspond to cuts with more than 3
quantifiers. The algorithmproduces the following decomposition D = U◦S of size |D| = 28:

U = { f1(α2), f2(f (f (α1, α2), α3), f (α1, f (α2, α3)), α1),

f2(f (α1, f (α2, α3)), f (α1, α2), α1), f2(f (α1, α2), f (α2, α1), α2),

f2(f (α1, α3), f (f (α1, α2), α3), α1), f2(α1, f (α1, α2), α2),

f3(f (f (α1, α2), α3), f (α1, α3)), f3(f (α3, α1), α3),

f4(f (α1, α2), α1, α3, α3), f4(α1, α1, f (α2, α3), α2),

f5(α1, α2, α3), f6(α3, α1), f7}

S =
⎧
⎨

⎩

⎛

⎝
a
b
c

⎞

⎠ ,

⎛

⎝
b
c
a

⎞

⎠ ,

⎛

⎝
c
a
b

⎞

⎠ ,

⎛

⎝
c
d
a

⎞

⎠ ,

⎛

⎝
d
a
c

⎞

⎠

⎫
⎬

⎭

From this decompositionwe can already see that wewill obtain a lemmawith three univer-
sal quantifiers.Wenowcompute the canonical substitution andminimize it as in Sects. 4 and5.

1 As of GAPT 2.2 this proof is included in examples/poset/poset-proof.scala, and
examples/poset/deltatable.scala contains a script that performs cut-introduction on that proof.

123

120 G. Ebner et al.

We treat = as an uninterpreted predicate symbol, i.e. we do not apply forgetful paramodula-
tion in theminimization procedure. This results in the following (alreadyminimized) solution
for the decomposition D:

(f (α3, α1) = α3 ⊃ α3 = f (α3, α1)) ∧
f (α3, α1) = f (α1, α3) ∧
(f (α1, α2) = f (α2, α1) ∧ f (α2, α1) = α2 ∧ α1 = f (α1, α2) ⊃ α1 = α2) ∧
(f (α2, α3) = α2 ∧ f (α1, α2) = α1 ∧ α1 = α1 ∧ α3 = α3 ⊃ f (α1, α3) = α1) ∧
α2 = α2

In this solution we can already vaguely identify transitivity and anti-symmetry of the
partial order: line 4 expresses the transitivity and line 3 expresses the anti-symmetry. However
there are still superfluous assumptions and direct copies of axioms included in the solution.
Applying beautification (Sect. 5.3) removes them, and we obtain the final solution:

(f (α2, α1) = α2 ∧ α1 = f (α1, α2) ⊃ α1 = α2) ∧
(f (α2, α3) = α2 ∧ f (α1, α2) = α1 ⊃ f (α1, α3) = α1)

While beautification improved the legibility of the generated lemma, it increased the size
of the decomposition from 28 to 44.

6.2 Large-scale Experiments

To demonstrate the wide applicability of our method, we have evaluated Algorithm 2 on a
large data set of automatically generated proofs. The TSTP library (Thousands of Solutions
fromTheoremProvers, see [33]) contains proofs fromavariety of automated theoremprovers.
We selected the first-order proofs (FOF and CNF) as of November 2015, consisting of a total
of 138005 proofs. Of these proofs in the TSTP, GAPT can import 68198 proofs (49.41%)
as Herbrand structures. The other proofs could not be imported because they use custom
proof formats, do not contain any detailed proof at all, contain cyclic inferences, or because
they use other unsupported or unsound inference rules. The imported proofs were produced
by superposition- and connection-based provers. Of these Herbrand structures, 32714 are
trivial: each term has a different root symbol—that is, each formula in the end-sequent is
instantiated at most once. Our method cannot generate lemmas for these trivial proofs.

We evaluated our lemma generation method on the remaining 35480 proofs and several
differentmethods to generate decompositions: theΔ-table algorithm for a single variable, and
many variables with and without row merging, as well as the so-called MaxSAT-algorithm
of [12] for different parameters.

We ran each of the combinations with a timeout of one minute. The computation was
performed on a Debian Linux system with an Intel i5-4570 CPU and 8 GiB RAM. Running 4
processes in parallel, the total runtime amounted to 31 days. Of the 35480 non-trivial proofs,
we could generate decompositions for 19122 proofs (53.90%), resulting in 12035 lemmas
(i.e. beautified solutions, making up 33.92% of the non-trivial proofs).

The first step in Algorithm 2 is to extract the term set of the proof—in the implementation
this is part of the proof import. The second step is then the computation of a decomposition.
Fig. 1 shows a so-called cactus plot 2 of the performance of the different algorithms that
we tested: for each of the algorithms we sorted the CPU runtime of the decomposition

2 Cactus plots have been popularized by the SAT community to visualize the performance of different solvers
on a benchmark set, and have since also been adopted by other competitions.

123

On the Generation of Quantified Lemmas 121

Fig. 1 Comparison of the different algorithms used to generate decompositions. The label 2_2_maxsat
refers to the algorithm of [12] with |ᾱ1| = 2 and |ᾱ2| = 2, many_dtable is the one from Sect. 3.2,
many_dtable_ss includes the row-merging modification, and 1_dtable is the variant of the Δ-table
algorithm that uses the Δ1-vector

Fig. 2 Symbolic complexity of improved and beautified solutions compared to the canonical solution

generation phase in ascending order, and then plotted the n-th runtime at x = n. In short, the
lower and righter a line, the better. We only selected those proofs where we could actually
generate a non-trivial lemma (and did not fail due to timeouts or beautification detecting a
trivial lemma). Judging by the number of decompositions computed that lead to non-trivial
lemmas, the best-performing algorithm was the Δ-table algorithm as described in Sect. 3.2.
The MaxSAT-algorithm from [12], finding a single cut with 2 quantifiers, came in as a close
second, although with a much higher constant overhead. Additional modifications to the Δ-
table algorithm (single variable, rowmerging) did not increase the number of decompositions
that could be computed. The orange line on the very right is a “virtual best” algorithm that
always picks the fastest one (as in a portfolio). The gap to the other algorithms shows that
while they can compute a similar number of decompositions, they succeed on classes of
proofs with little overlap.

The next big step is the improvement and beautification of the solution. Figure 2 shows the
change of symbolic complexity when going from canonical solution to improved solution
and finally to the beautified solution. As the size of the canonical solution varies widely

123

122 G. Ebner et al.

Fig. 3 Result of the algorithm depending on the termset size

depending on the size of the decomposition, we have normalized the symbolic complexity of
the improved and beautified solutions by the symbolic complexity of the canonical solution.
We also only show data for proofs where we could actually compute a non-trivial beautified
solution. Improvement by itself only manages to reduce the size of the canonical solution
in some cases, many solutions are irreducible. However improvement plants the seed for
beautification to significantly reduce the size of the solution: after beautification, the typical
solution is only a third of the size the canonical solution. During beautification, the size of
the decomposition increased on average by 10. This is a small increase compared to the size
of the decomposition.

It is hard to measure the effect of the algorithm on proof size. For one, we cannot fairly
compare the size of the input proofs in the TSTP to the proofs with cut—simply because
they are proofs in different calculi. The proofs in the TSTP are typically resolution proofs,
while we produce proofs in LK that are cut-free except for the cuts we introduce. When
we compare the produced proofs with cut-free proofs in LK, then we actually observe an
increase in proof size. We used the GAPT tableau prover to generate cut-free proofs of the
Herbrand sequents (this is the same prover used to generate the cut-free sub-proofs in the
proofs with cut). The proofs with cut are typically 1.5 times longer than the cut-free ones.

To judge the overall results of the algorithm, Fig. 3 then shows for how many proofs from
the TSTP data set we successfully generate lemmas, grouped by termset size. Many of the
proofs with termsets of size 10 or less are trivial. In a trivial termset, each term has a different
root symbol—every quantified formula is instantiated at most once. In this case we cannot
find a smaller decomposition, and hence cannot generate lemmas. Incompressible termsets
are then those for which the algorithm does not find a compressing decomposition due to
other reasons. The algorithm most successfully generates lemmas for proofs with termsets
of size between 10 and 50 (Fig. 4).

The theoretical motivation behind our approach is the observation that good lemmas
produce small proofs. From the point of view of quantifier complexity, this observation states
that good lemmas correspond to small decompositions. Hence it makes sense to evaluate

123

On the Generation of Quantified Lemmas 123

Fig. 4 Result of the algorithm depending on the termset size, ignoring trivial and incompressible term sets

Fig. 5 Compression ratio (size of decomposition divided by size of termset) depending on the termset size

how small the decompositions are that the algorithm produces. Figure 5 shows the achieved
compression ratio on the TSTP data set, grouped by termset size; on the right we see just
the results from the decomposition phase, on the left we see only those decompositions for
which the algorithm did in fact generate a lemma. (The discrete lines are due to the fact that
the termset and decomposition size are both small natural numbers.) As observed before, we
generate most lemmas for termset sizes between 10 and 50—this is also evident from the left
plot. Here we often attain a compression ratio of 0.5, that is, the decomposition is half the
size of the termset. Comparing the left and right side, we notice that there is a large number
of proofs where we manage to find a decomposition but could not generate a lemma. These
are large proofs with termset sizes of more than 100. Nevertheless the decomposition phase
results in an even greater compression than for the small proofs. We believe that this gap
between found decompositions and generated lemmas is due to the exponential size of the
canonical solution that is necessary to generate the lemma.

123

124 G. Ebner et al.

Table 1 Examples of automatically generated lemmas

Problem Prover Generated lemma

SET190-6 E complement (complement (x)) = x

SET047-5 Metis set_equal(x2, x1) ⊃ set_equal(x1, x2)

SET175+3 SInE (x1 ∩ x2 ⊆ x3 ∨ sk(x1 ∩ x2, x3) ∈ x2)∧
(sk(x2, x1 ∩ x2) ∈ x1 ∧ sk(x2, x1 ∩ x2) ∈ x2 ⊃ x2 ⊆ x1 ∩ x2)

PUZ007-1 E f emale(x) ⊃ f rom_mars(x) ∨ truthteller(x)

RNG119+1 E aElementO f 0(x2, x1) ∧ aIdeal0(x1) ⊃ aElement0(x2)

GRP040-3 SNARK subgroup_member(identi t y) ∧ subgroup_member(x) ⊃
subgroup_member(inverse(x))

SEU154+1 Prover9 ¬in(x, empty_set)

Table 1 shows a few examples of lemmas that were automatically generated from proofs
in the TSTP data set. Our method finds purely equational lemmas, as well as propositionally
more complex lemmas.

7 Conclusion and Future Work

We have presented an algorithm for the generation of quantified lemmas and evaluated its
implementation. The algorithm takes an analytic proof in the form of a Herbrand-sequent
as input and creates a sequent calculus proof with Π1-cuts. It is complete in the sense that
it permits a reversal of any cut-elimination sequence [18]. This algorithms shows that, not
only does the structure of an analytic proof reflect lemmas of non-analytic proofs of the same
theorem, but the latter can be reconstructed from the former.

The evaluation of the implementation in the GAPT-system has demonstrated that it is
sufficiently efficient to be applied to proofs generated by automated theorem provers. We
have demonstrated it on a case study generating the essential conditions of the definition of
a partial order from a proof formulated in the language of lower semilattices.

This algorithm opens up a number of perspectives for future research: it is of proof-
theoretic as well as of practical interest to obtain a better understanding of the structural
differences between cut-free proofs generated by theorem provers and cut-free proofs gen-
erated by cut-elimination, in particular: which strategies of theorem provers are likely to
generate proofs which have a structure similar to those obtained by cut-elimination (and
hence permit a significant compression by our method)? Can we modify a given cut-free
proof in order to adjust the structure to a more regular one, e.g., by factoring out certain
background theories?

We also consider it an interesting foundational endeavor to carry out further case studies
along the lines of that in Sect. 6.1 motivated by the question mentioned in the introduction:
which central mathematical notions can be justified based on grounds of proof-complexity
alone (as opposed to human legibility of proofs)?

The algorithm for lemma generation described in this paper has been extended to amethod
for inductive theorem proving in [13]. In [13], the generated non-analytic formula is the
induction invariant. Since the primary goal is to find any inductive proof, concerns about the
legibility of proofs as addressed in Sect. 5 become secondary.

Last but not least, we plan to extend the method presented here to cuts with quantifier
alternations. There is a satisfactory understanding of the shape of decompositions of more

123

On the Generation of Quantified Lemmas 125

complex cuts, see [1–4]. The central theoretical problem for an extension in this direction is
the question if every such—more complex—decomposition has a canonical solution. In [22],
this question has been solved negatively for first-order logic without equality and a partial
algorithm for the introduction of a Π2-cut which is capable of exponential compression has
been given. However, for first-order logic with equality, the question remains open.

Acknowledgements Open access funding provided by TU Wien (TUW). This work is supported by the
Vienna Science and Technology Fund (WWTF) project VRG12-004.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Afshari, B., Hetzl, S., Leigh, G.E.: Herbrand disjunctions, cut elimination and context-free tree grammars.
In: Altenkirch, T., (ed.) International Conference on Typed Lambda Calculi and Applications (TLCA)
2015, LIPIcs, vol. 38, pp. 1–16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

2. Afshari, B., Hetzl, S., Leigh, G.E.: Herbrand confluence for first-order proofs with Π2-cuts. In: Probst,
D., Schuster, P. (eds.) Concepts of Proof in Mathematics, Philosophy, and Computer Science, pp. 5–40.
De Gruyter, Berlin (2016)

3. Afshari, B., Hetzl, S., Leigh, G.E.: On the Herbrand content of LK. In: Kohlenbach, U., van Bakel, S.,
Berardi,S., (eds.) 6th InternationalWorkshop onClassical Logic andComputation (CL&C2016), EPTCS,
vol. 213, pp. 1–10 (2016)

4. Afshari, B., Hetzl, S., Leigh G.E.: Herbrand’s Theorem as Higher-Order Recursion. Preprint OWP-2018-
01, Mathematisches Forschungsinstitut Oberwolfach (2018)

5. Baaz, M., Zach, R.: Algorithmic structuring of cut-free proofs. In: Computer Science Logic (CSL) 1992.
Lecture Notes in Computer Science, vol. 702, pp. 29–42. Springer (1993)

6. Birkhoff, G.: Lattice Theory, American Mathematical Society Colloquium Publications, vol. XXV, 3rd
edn. American Mathematical Society, Providence (1967)

7. Bundy, A.: The automation of proof by mathematical induction. In: Voronkov, A., Robinson, J.A. (eds.)
Handbook of Automated Reasoning, pp. 845–911. Elsevier, Amsterdam (2001)

8. Bundy,A., Basin,D.,Hutter, D., Ireland,A.: Rippling:Meta-LevelGuidance forMathematical Reasoning,
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2005)

9. Cavagnetto, S.: The lengths of proofs: Kreisel’s conjecture and Gödels speed-up theorem. J. Math. Sci.
158(5), 689–707 (2009)

10. Colton, S.: Automated theory formation in pure mathematics. Ph.D. thesis, University of Edinburgh
(2001)

11. Colton, S.: Automated Theory Formation in Pure Mathematics. Springer, Berlin (2002)
12. Eberhard, S., Ebner, G., Hetzl, S.: Algorithmic compression of finite tree languages by rigid acyclic

grammars. ACM Trans. Comput. Log. 18(4), 26:1–26:20 (2017)
13. Eberhard, S., Hetzl, S.: Inductive theorem proving based on tree grammars. Ann. Pure Appl. Log. 166(6),

665–700 (2015)
14. Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S.: System description: GAPT 2.0. In:

8th International Joint Conference on Automated Reasoning, IJCAR (2016)
15. Finger, M., Gabbay, D.: Equal rights for the cut: computable non-analytic cuts in cut-based proofs. Log.

J. IGPL 15(5–6), 553–575 (2007)
16. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210,405–

431 (1934–1935)
17. Hetzl, S., Leitsch, A., Reis, G., Tapolczai, J., Weller, D.: Introducing quantified cuts in logic with equality.

In: Demri, S., Kapur, D., Weidenbach, C., (eds.) Automated Reasoning - 7th International Joint Confer-
ence, IJCAR. Lecture Notes in Computer Science, vol. 8562, pp. 240–254. Springer (2014)

18. Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified cuts. Theor. Comput.
Sci. 549, 1–16 (2014)

123

http://creativecommons.org/licenses/by/4.0/

126 G. Ebner et al.

19. Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In: Logic for Programming,
Artificial Intelligence and Reasoning (LPAR-18). Lecture Notes in Computer Science, vol. 7180, pp.
228–242. Springer (2012)

20. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. J. Autom. Reason. 16(1–2), 79–111
(1996)

21. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. J. Autom. Reason.
47(3), 251–289 (2011)

22. Leitsch, A., Lettmann, M.P.: The problem of Π2-cut-introduction. Theor. Comput. Sci. 706, 83–116
(2018)

23. Miller, D., Nigam, V.: Incorporating tables into proofs. In: 16th Conference on Computer Science and
Logic (CSL07). Lecture Notes in Computer Science, vol. 4646, pp. 466–480. Springer (2007)

24. Orevkov, V.: Lower bounds for increasing complexity of derivations after cut elimination. Zapiski Nauch-
nykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta 88, 137–161 (1979)

25. Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5(1), 153–163 (1970)
26. Plotkin, G.D.: A further note on inductive generalization. Mach. Intell. 6, 101–124 (1971)
27. Pudlák, P.: The Lengths of Proofs. In: Buss, S. (ed.) Handbook of Proof Theory, pp. 547–637. Elsevier,

Amsterdam (1998)
28. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic formulas. Mach. Intell.

5(1), 135–151 (1970)
29. Shoenfield, J.R.: Mathematical Logic, 2nd edn. Addison Wesley, Boston (1973)
30. Sorge, V., Colton, S., McCasland, R., Meier, A.: Classification results in quasigroup and loop theory via

a combination of automated reasoning tools. Comment. Math. Univ. Carol. 49(2), 319–339 (2008)
31. Sorge, V., Meier, A., McCasland, R., Colton, S.: Automatic construction and verification of isotopy

invariants. J. Autom. Reason. 40(2–3), 221–243 (2008)
32. Statman, R.: Lower bounds on Herbrand’s theorem. Proc. Am. Math. Soc. 75, 104–107 (1979)
33. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J.

Autom. Reason. 43(4), 337–362 (2009)
34. Vyskočil, J., Stanovský, D., Urban, J.: Automated proof compression by invention of new definitions. In:

Clark, E.M., Voronkov, A., (eds.) Logic for Programming, Artifical Intelligence and Reasoning (LPAR-
16). Lecture Notes in Computer Science, vol. 6355, pp. 447–462. Springer (2010)

35. Woltzenlogel Paleo, B.: Atomic cut introduction by resolution: proof structuring and compression. In:
Clark, E.M., Voronkov, A., (eds.) Logic for Programming, Artifical Intelligence and Reasoning (LPAR-
16). Lecture Notes in Computer Science, vol. 6355, pp. 463–480. Springer (2010)

123

	On the Generation of Quantified Lemmas
	Abstract
	1 Introduction
	2 Proofs and Herbrand Sequents
	2.1 Extraction of Terms

	3 Computing Decompositions
	3.1 The Δ-vector
	3.2 The Δ-table
	3.3 Incompleteness and Row-Merging
	3.4 The MaxSAT-Algorithm

	4 Computing Cut Formulas
	5 Improving the Solution
	5.1 On the Solutions for a Single Π1-Cut
	5.2 Simplification by forgetful inference
	5.3 Beautifying the Solution

	6 Implementation and Experiments
	6.1 Lattices
	6.2 Large-scale Experiments

	7 Conclusion and Future Work
	Acknowledgements
	References

