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Abstract

Skolemization is unsound in intuitionistic logic in the sense that a Skolemiza-
tion sk(F') of a formula F' may be derivable in the intuitionistic sequent calculus
LJ while F itself is not. This paper defines a transformation 7. that differs from
Skolemization only by its use of e-terms instead of Skolem terms; and shows
that, for a simple locally restricted sequent calculus LJ*, this transformation is
sound: if T.(F) is derivable in LJ*, then so is F.

1 Introduction

It is well-known that there are formulas whose Skolemizations are derivable in the
intuitionistic sequent calculus LJ while the formulas themselves are not. Conse-
quently, there exists no immediate method of de-Skolemization, i.e. a method to
eliminate Skolem terms from intuitionistic proofs by introducing quantifiers without
obtaining just classical proofs. The usual reaction to this fact is to conclude that
Skolemization is intrinsically unsound in intuitionistic logic and, consequently, must
be either avoided or modified in sophisticated ways [4, [9]. These approaches assume
(quite naturally) that provability in LJ correctly captures validity in intuitionistic
logic even in the presence of Skolem terms.

This paper explores a different approach that regards LJ as an unsound calcu-
lus for reasoning about formulas containing Skolem terms. From this perspective,
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the reason why underivable formulas become derivable in LJ after they have been
Skolemized is due to LJ’s inference rules being too permissive: they fail to recognize
the special status of Skolem terms and allow them to be used in ways that should be
forbidden. Therefore, the interesting question is not how to modify Skolemization in
order to obtain an intuitionistically sound Skolemization-like transformation w.r.t.
to LJ, but how to modify and restrict LJ so that Skolemization is sound w.r.t. the
restricted calculus.

The main contribution of this paper is the design of a restricted sequent calculus
LJ* for which epsilonization is sound: if T.(S) (the epsilonization of the sequent
S) is derivable in LJ*, then so is S. In particular, we define a method of de-
epsilonization of intuitionistic proofs transforming intuitionistic proofs with e-terms
into ordinary intuitionistic proofs. The transformation 7} differs from Skolemization
mainly in its use of Hilbert’s e-terms instead of Skolem terms. But in contrast to
Hilbert’s traditional e-calculus, where all quantifiers are eliminated, T, eliminates
only strong quantifiers. Skolem terms can be regarded as abbreviations of Hilbert’s
e-terms [1]; conversely, e-terms can be regarded as more informative Skolem terms.
LJ”* restricts the use of e-terms in the instantiations performed by weak quantifier
rules. The restrictions are local and purely syntactic; they use the extra information
available in e-terms but not in Skolem terms.

2 LJ and Epsilonization

We assume the reader is familiarized with the language of first-order logic. The rules
of LJ are depicted in Figures [1| and V; and 3, are called weak quantifier rules,
while V,. and J; are called strong quantifier rules. VY-quantifiers of positive polarity
and J-quantifiers of negative polarity are called strong quantifiers.
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Figure 1: Propositional and Structural Rules for LJ
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where:

e « must satisfy the eigenvariable condition.

Figure 2: Quantifier Rules for LJ

Skolemization is a transformation that removes all strong quantifiers from first-
order formulas and replaces the variables they quantify by Skolem terms. There
are various Skolemization methods, which may differ in the proof complexity of the
transformed formula [5]. To see that Skolemization does not preserve derivability in
the sequent calculus LJ, consider the formula =Vz.P(x) — Jy.—P(y), in which the V
quantifier is strong (note that it would be introduced by a V, inference in a sequent
calculus proof). While it is clear that ¥y —=Va.P(z) — Jy.—P(y), the proof below
shows that its Skolemization —P(s) — Jy.—P(y) (where s is a skolem constant) is
derivable:

PstF Ps
Ps,—Pst+
“PsF -Ps

-PsF Jy.—Py T—h«
F—-Ps — Jy.~Py

-

T

In this example, the use of s on the weak quantifier rule could be avoided if
we had more information about it. In order to obtain more informative terms, we
choose to use e-terms instead of Skolem terms for replacing the strongly quantified
variables of a formula.

e-termdl] are formed with two binders: € and 7. The intended meaning of e-terms
is delimited by the following epsilon azrioms:

dx.Alz] — Ale;Alz]] and  Alr,Alz]] — V. Alz]
In classical logic, the following equivalences hold, and hence 7 is definable using e:

Al Alz]] <> Vx. Alz] <> —=Fz.—Alz] <> ~—Ale,—Alzx]] <> Ale,—Alx]]

"'We assume that the usual inductively defined terms of first-order logic are extended to include
e-terms. Hence, in general, a term may or may not contain e-binders. e-terms, on the other hand,
are assumed to have € or 7 binders as their outermost symbols. Therefore, every e-term is a term,
but not every term is an e-term.
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In intuitionistic logic, however, the equivalences above do not hold. Therefore, both
binders are needed. Epsilonization is analogous to Skolemization, but it uses e-terms
instead of Skolem terms.

Definition 1 (Epsilonization). An epsilonization T.(F) of a formula F is defined
inductively on the structure of F using two functions TS and T . On the definitions
below, p € {+,—} and p is + if p=— and — if p = +.

T.(F) = TI(F)
TP(A) = A if A is atomic.
TP(~A) = ~TP(A)
TP(AANB) = TP(A)ANTP(B)
TP(AVv B) = TP(A)VTP(B)
THA=B) = THA)—T2(B)

T (3x.A) = 32.TF(A)
Tr(vVz.A) = A{xw— 7,A"} for A =T (A)
T-(Vz.A) = Va.TI. (A4)
T (3z.4) = Az e, A} for A =T (A)

Definition 2 (Epsilonization of sequents). The epsilonization T.(S) of a sequent S
of the form Ay, ..., Ap & Bu,..., By, is a sequent of the form T (A1),..., T (An) F
T (By),..., T (Bp).

In Skolemization one needs to explicitly keep track of weakly quantified variables
in order to add them as arguments of the Skolem function. In epsilonization such
book-keeping is not needed. Since the whole formula will be a sub-expression of
the e-term, the weakly quantified variables will occur naturally in the term. In
contrast to what is done in Hilbert’s e-calculus [I], the epsilonization procedure
defined here does not eliminate the weak quantifiers; therefore e-terms may contain
quantified formulas. Like in the standard e-calculus, innermost strong quantifiers
are removed first. Using this strategy, strong quantifiers will never occur inside an
e-term. Instead, it will contain nested e-terms corresponding to the variables that
were bound by those strong quantifiers. An e-term that is not nested inside another
e-term is a top-level e-term.

Example 1. Consider the formula VYx.3y.3z.P(x,y,z). In a negative context, its
epsilonization would be:

Vo.P(x,eyP(z,y,e.P(x,y, 2)),e.P(x,eyP(x,y,e.P(2,y, 2)), 2))
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As desired, the weakly quantified variable x naturally occurs inside the e-terms
for y and z. The weak quantifier Yx remained. The innermost strong quantifier
Jz within the scope of the strong quantifier 3y resulted in an e-term for y (i.e.
eyP(x,y,e.P(x,y,2))) containing a nested e-term for z (i.e. e,P(x,y,z)) as a sub-
term. The e-terms ey P(x,y,e.P(x,y,2)) and e, P(x,e,P(x,y,e,P(z,y,2)),2) are
top-level e-terms in the formula above. Comparing the epsilonization with a Skolem-
ization of the same formula, such asVx.P(x, sky(z), sk.(x)), the Skolem terms sk, (z)
and sk(x) can be seen as abbreviations for the two top-level e-terms.

The treatment of strong quantifiers from inside out is compatible to our principal
aim: the epsilonization of proofs. Since this procedure (presented in Definition
traverses the proof from the axioms to the end-sequent, innermost quantifiers are
treated first. The motivation for removing strong quantifier inferences from proofs is
due to the CERES method for intuitionistic logic [6], [10], a cut-elimination procedure
based on the resolution calculus. To apply this method, the proof must not contain
strong quantifier inferences on end-sequent ancestors. This is easily accomplished for
classical logic via Skolemization (as we can eventually de-Skolemize the constructed
cut-free proof), but it is not straightforward for intuitionistic proofs.

3 LJ*: arestricted LJ

We now define LJ*, a version of LJ with restricted weak quantifier rules, which uses
information available in the e-terms to decide if they can be used on the instantiation
of weak quantifiers. In what follows we will use v to denote any of the e-binders e
or 7, and ~ as a rewriting relation.

Definition 3. A term t is accessible in a formula F' iff:

o for any top-level e-term v, G int it is the case that F[v,G ~ x| is a sub-formula

of G; or

e t contains a nested e-term vy H such that vyH is accessible in F' and t{vyH ~> y]
is accessible in FvyH ~ y].

The recursion in Definition [3]is necessary for coping with arbitrarily nested e-terms.
Example 2. Consider the formula F below:
P(w7 EyP(’w, Y, EZP(wa Y, Z))v 6ZF)(wv gyp(w, Y, €ZP(’LU, Y, Z)), Z))

Let t1 be the term eyP(w,y,e.P(w,y,z)). The term t is accessible in F, because
F[ty ~ y] (which is equal to P(w,y,e,P(w,y,z))) is a sub-formula of G1 (where
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G is, in accordance with Definition [3, P(w,y,e-P(w,y,z))). Let ta be the term
e.P(w,eyP(w,y,e;P(w,y, 2)),z). The term ty is accessible in F', because t1 is ac-
cessible in F' and ta[t; ~ y| (which is e, P(w,y, z)) is accessible in F[t; ~ y| (which
is P(w,y,e.P(w,y,z))), since F[t; ~ y|[ta[t1 ~ y] ~ 2] (which is P(w,y,z)) is
a sub-formula of G (where Go is the formula under the scope of the e-binder in
tQ[tl ~ y]: P(w7y7 Z))

Definition 4. A term t is accessible in a sequent S iff all top-level e-terms in t are
accessible in some formula occurring in S.

When thinking about bottom-up proof search, a term is accessible only after the
strong quantifier inference introducing its corresponding eigenvariable in a regular
LJ proof is applied. This means that, at this point, the term (or the eigenvariable) is
already available for use in a weak quantifier inference. Take our previous unprovable
sequent: F —Va.Px — Jx.—Px. As shown before, its Skolemization is provable in
LJ because the skolem term used for Vx.Px is available to be used in dx.—~Px. The
epsilonization of this sequent is: + —P(7,Px) — Jz.-Px. The fact that Px is a
sub-formula of =Pz informs us that the strong quantifier was within the scope of
the negation, and therefore a negation inference would have to be applied in order
to make the e-term accessible before it could be used in a weak quantifier inference.
Therefore, as desired, the epsilonized sequent is not provable in LJ*.

Additionally, the e-terms used in this calculus will contain labels. The purpose
of these labels is two-fold.

Firstly, they will restrict the shape of the proofs in LJ* in order to make de-
epsilonization possible. Without the restriction, the removal of e-terms and re-
introduction of strong quantifiers could generate incorrect LJ proofs that violate the

eigenvariable condition. Take, for example, the following proof of the epsilonization
of -Vx.—~Px,Vz.Yy.~(Pz A Py) F:

P(r,—Px) v+ P(r,—Px) P(r,—Px)t P(r,—Px)
P(r,—Px), P(1,—Pzx) - P(1,—Px) A P(1,—Px)
P(r,—Pz), P(r,—~Px), ~(P(r,~Pz) A P(r,~Pz)) F .
P(rs—Pz), ~(P(ry~Pz) A P(r;—Px)) F =P(r,~Pz)
P(r,—Px),~—P(r,—Px),-(P(1,.—Pz) A P(t,—Pzx)) -
P(r,—Pz), —P(1,~Px),Vy.~(P(1,—Px) A Py) F
P(r,—Px), "~ P(1,~Px),Vz.Yy.—~(Pz A Py) F
—=P(1,—Px),V2¥y.~(Pz A Py) b =P(1,—Pzx)
~—P(rp=Px), ~—P(ry—Pz),VzVy—(Pz A Py) - ;l
—=P(1,—Pz),Vz.Yy.~(Pz A\ Py)

T

1

l

l

r
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When de-epsilonizing, two strong quantifiers need to be introduced in this proof;
both of them between —; and —, inferences: one in the second/third level and the
other in the sixth/seventh, bottom-up. The proof with the strong quantifiers is:

Pa)F Pla) P(3)F P(B)
P(a), P(5) F P(a) A P(5)
P(a), P(3),~(P(a) A P(A)
Pla), ~(P(a) A P(3)) F ~P(3)
P(a), ~(P(a) A P(3)) F Vo.~P(a)
P(a), ~¥a.~P(z), ~(P(a) A P(B)) -
P(a), ~Vz.~P(z),Vy.~(P(a) A Py)
P(a),Vz.—P(x),Vz.Yy.~(Pz A Py) -
—Va.mP(z),VzVy.~(Pz A Py) b =P(«) N
—Va.—P(z),V2.Yy.~(Pz A Py) - Va.~P(x)
~Vz—P(x), Vr—P(z),V2.Vy—~(Pz A Py) -
—Va.mP(z),VzVy.~(Pz A Py) F “

T

T

V.
T

l

Note that the top-most V,.* inference violates the eigenvariable condition. In fact,
as this rule is applied after (above) both weak quantifiers, a violation is unavoidable.
The only way of de-epsilonizing the proof into a valid LJ proof would be to perform
more complex operations, such as re-ordering of inferences. Instead of pursuing a
more complicated de-epsilonization procedure, we restrict proof search in LJ* by
using labels and avoiding the construction of such proofs in the first place. The

restriction still preserves completeness.
Secondly, the labels will make epsilonization of LJ proofs an injective function.
If labels were not used, the two following derivations would map to the same one:

Pa, Pp
Pa,3z.Px ! Po, Pa -
Jx.Px,3z.Px cll ﬁ HCl
Jx.Px Jx.Px -
Y
P(e,Px), P(exPx) o
P(e,Px)

Figure [3| shows the inferences of LJ* that are different than those of LJ, all
others remain the same. The labels in e-terms can be variables or constants. When
epsilonizing a formula according to Definition [l each e-term receives a different
label variable. When using LJ* for proof search, the following conditions must be
enforced:
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e On the initial rule, the corresponding e-terms in the antecedent and consequent
must have the same labels, and these must be constants.

e On the weak quantifier rules, the term ¢ used for the substitution must be ac-
cessible and, additionally, its e-subterms must have constants as labels. If this
is not the case, the label variables of the e-terms in ¢ that occur in accessible
positions in the conclusion sequent are substituted by a new (fresh) constant.

e Upon contracting a formula with e-terms that have a variable label, there are
two cases:

— For accessible e-terms, the same variable is used in the contracted occur-
rences in the premise.

— For inaccessible e-terms, new variable labels are created to be used in the
contracted occurrences in the premiseﬂ

If the label is a constant, then it was already used by a weak quantifier infer-
ence below contraction, which means the term is accessible. In this case, the
constant label is simply copied to the contracted occurrences in the premise.

A FF I'-Af .
Ve Alz]-F Y Tr3zAlr] 7 AL Fl+ AL F)

where:
e the term ¢ must be accessible in the conclusion sequent (accessibility condition).

e accessible occurrences of ¢ or any of its e-subterms in I' and F must have a
constant as a label (label condition).

e [ is a constant in a (initial condition).

Figure 3: Rules for LJ*

One might wonder about the (im)possibility to devise a simpler treatment of
labels or stronger restrictions on contracted formulas in order to avoid the problems
shown before. An immediate thought would be to use always constant labels and
force contraction to create two different labels on the premises. But this restriction is
too strong and would render the calculus incomplete, if it were adopted. The sequent

2This means that proofs in LJ* might contract formulas with different labels in its e-terms.




EPSILON TERMS IN INTUITIONISTIC SEQUENT CALCULUS

dzx.Px = Jz.(Px A Px) is an example. Its epsilonization is P(e,Px) F 3z.(Pxz A Px)
and a proof in LJ* is shown below:

P(eyPx) F P(e,Px) P(eyPx) b P(e,Px)
P(e,Px), P(e,Px) - P(exPx) A P(e,Px)
P(e,Px), P(e;Px) b 3x.(Px A Pzx) ‘ "
P(e,Px) - 3z.(Px A Px)

T

If different labels were used when contracting, the sequent would not be provable.

Another simpler potential solution would be to restrict contraction to formu-
las that only have accessible e-terms. Unfortunately, this does not work in the
general case. Consider the sequent —(Vx.Px V —Vz.Pz) F, whose epsilonization is
—(P(1yPx)V—Vz.Px) . The term 7, Pz is obviously not accessible, thus should con-
traction on this formula not be allowed, the sequent would not be provable (whereas
the original sequent is intuitionistically valid).

Theorem 1 (Soundness). For an e-free formula F, if bpp F then bpy F.

Proof. Let ¢ be an LJ*-proof of F. Then an LJ-proof 1) of F' can be constructed
simply by replacing ¥ and 3, inferences by, respectively, V; and 3, inferences. Since
F' is e-free, the rules a and ¢; are the same as those in LJ. O

LJ* is also sound relative to LJ for formulas with e-terms (i.e., if by gy Tc(F)
then Fry T-(F)). We simply need to ignore the labels when transforming the proof.

Theorem 2 (Completeness). For an e-free formula F, if by F then by F.

Proof. Since F' is e-free and Fry F, there is an e-free LJ-proof ¢ of F. An LJ*-
proof ¢’ of F can be constructed simply by replacing all V; and 3, inferences by,
respectively, ¥} and 3. inferences. No accessibility or label violation occurs, because
no term in 1)’ contains e-terms. Also, the conditions for the inferences a and ¢; are
not violated, for the same reason. O

The epsilonization of a proof removes the strong quantifier inferences that operate
on ancestors of formulas occurring in the end-sequent and replaces the corresponding
eigenvariables by e-terms.

Definition 5 (Epsilonization of proofs). Let 1) be an LJ* proof of an e-free sequent
S. We define T.(¢), an LJ* proof of T-(S), inductively on the inference rules.
Base case: i consists of only one axiom. Then T.(¢) = 1.

Step case: Y ends with an inference p, as in the following cases.
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e p isV, or 3 applied to an end-sequent ancestor.

Let (Qx)F be the main formula, 1’ be the proof of p’s premise and « the
etgenvariable used to instantiate the strongly quantified variable x. By induc-
tion hypothesis, T.(v') is well defined. Then T:(v¥) is Te(¢'){a — v F},
where v is e if Q is 3 and 7 if Q isV, and [ is a fresh constant label.

Note that strong quantifiers that go to cut-formulas are not replaced.

e p is V) or 3, applied to an end-sequent ancestor.

Let (Qz)Fx be the main formula, Ft the auziliary formula and v’ the proof
of p’s premise. By induction hypothesis, T-(¢') is well defined. Then T.(1))
is Te(¢') plus the inference V; or 3, (depending whether @Q is ¥ or 3) which
introduces the quantifier and replaces t by x in F', including the occurrences
of t inside copies of F' occurring in e-terms. The variable x used may not be
bound.

e p is ¢ applied to an end-sequent ancestor, and the formulas contracted contain
e-terms with labels.

Let 4" be the proof of p’s premise. By induction hypothesis, T-(¢') is well
defined. Then T:(v)) is T-(¢') plus the contraction, where its main formula
will have new variables as labels.

e p is another inference. Then T.(¢) = 1.

Observe that, apart from possibly different labels, contraction will always operate
on equal terms, since weak quantifiers also operate on formulas inside e-terms:

v
P(a,a), P(b, ) s T.(2)
X Iy Lo
3y.P(a,y),3y.P(b.y) F s P(a,e;.P(a,y)), P(b,ey.P(b,y)) - 2
V. 3y.P(x,y),Vo.3y.P(z,y) - cl Va.P(z, el .P(z,y)),Ye.P(z, e Pz, y)) - o
Va.Jy.P(z,y) b : ~ Vx.P(a:,sé/.P(x,y)) +

Lemma 1. If an LJ*-proof 1 has end-sequent S, then T-(1)) has end-sequent T.(S)
(modulo renaming of labels).

Proof. By induction on the structure of ¥ and by Definition O

Lemma 2. If ¢ is an LJ"-proof of S, then no weak quantifier inference in T (1))
violates the accessibility condition.
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Proof. First of all, note that the order in which the inferences are applied in T¢ (1))
is the same as in v, with the only difference being that strong quantifier inferences
were removed.

Let Qz.F be a strong quantified formula in S, a the eigenvariable used for this
strong quantifier in 1) and Q'x.G a weak quantifier in S which is instantiated in 1)
with a term containing «. Since v is a correct proof, the weak quantifier inference
pw on Q'z.G occurs after (above) the strong quantifier inference ps on Qz.F.

Now consider the proof T.(v)). Given Definition |5, at the point where ps was
applied, the formula Qz.F will have the shape F'[v) F'], where F’ is possibly F
without strong quantifiers. Since F’ is a sub-formula of F’, the e-term is already
accessible. All inferences above this point will either decompose (the outer-most)
F' into more sub-formulas or keep it unchanged. In this way, the e-term v) F’
will remain accessible. As p,, is applied after (above) the considered point, the
accessibility relation will not be violated. O

Lemma 3. If ¢ is an LJ"-proof of S, then no weak quantifier inference in T.(1))
violates the label condition.

Proof. By Definition [f] the eigenvariables in a proof are always replaced by e-terms
with constant labels. Since a weak quantifier that uses an eigenvariable o occurs
above the strong quantifier that introduced such variable, the label condition will
hold in the epsilonized proof. O

Lemma 4. If 1 is an LJ*-proof of S, then no axiom inference in T. (1) violates the
initial condition.

Proof. Trivial by Definition [5|and by the fact that there are no inferences operating
above axioms. O

Theorem 3. Ifbryp S, then by T-(S).

Proof. Let 1) be an LJ*-proof of S. Then, by Lemmas and 4| T.(¢) is a
correct LJ*-proof of T.(S5). O

De-epsilonization of proofs, denoted by T. !, replaces e-terms by eigenvariables and
introduces strong quantifier inferences in appropriate places. To detect the appro-
priate places, the following definition is helpful.

Intuitively, the de-epsilonization procedure will traverse a proof ¢ in a top-down
manner, re-applying the inference rules from . As this is done, the sequents will
contain formulas of the form A[v,B[z]| where v, B[z] is a top-level e-term, for in-
creasingly more complex A. Thus, v, B|z] is initially accessible in the formula and in
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the sequent, while A is a subformula of B. Replacing the e-term by an eigen-variable
and introducing a strong quantifier inference for this eigen-variable becomes possible
when A becomes exactly equal to B, in which case the e-term is said to be ready.
However, to avoid violations of the eigen-variable condition, it is still necessary to
postpone the introduction of strong quantifier inferences as much as possible. That is
why the de-epsilonization procedure seeks to introduce them just before they become
inaccessible. However, introducing them earlier may be necessary if a contraction
operates on occurrences of v, B[z] with different labels.

Definition 6 (De-epsilonization of proofs). Let F' be an e-free formula and ¢ an
LJ* proof of T.(F). The de-epsilonization T. 1 (1)) is constructed inductively on the
inference rules.

Base case: ) consists of only one aziom. Then T () = 1.

Step case: 1 ends with an inference p. By the induction hypothesis, the de-
epsilonization of p’s premises: T- (1) and (for the case of binary inferences)
T (apo) are well-defined. Then T () is defined according to the possible cases
for p:

® p is a weakening.

Then T Y(ah) is simply T=(¢1) followed by the same weakening.

® pis a cut.

Then T () is the proof obtained by applying the same cut on T- (1) and
Ts_l(q/)2)'

e p is a contraction on a formula F.

If F contains no e-terms, then T, 1(1) is defined as T (1) followed by the
contraction. Otherwise, if the contracted formulas contain e-terms Vil G and
vz G, then T 1 (1)) depends on the following cases for Iy and l:

— The labels Iy and ls are equal, regardless whether they are variables or
constants. In this case, T-1(¢) is defined as T (') followed by the
same contraction.

— The labels Iy and ly are two different constantéﬂ. In this case, F' and G are
the same, then T (v) is defined as T (y1){vht Fx s a}{v2 Fx s B}
followed by two strong quantifier inferences (V, if v is 7 and 3 if v is€)
and a contraction on the quantified formulas.

3This case occurs for epsilonized proofs, but not in proofs obtained by proof search in LJ*.
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The case where 1y and ly are two different variables does not occur for one of
two reasons: (1) if 1 was obtained via proof search in LJ*, then contraction of
formulas with accessible e-terms copies the variables to the premise, and thus
they will be instantiated with the same constant at a later step; or (2) if 1 was
obtained via epsilonization of a LJ proof, the labels will be constants.

e p is a logical inference.

If p operates on e-free formulas or all top-level e-terms in p’s auziliary formulas
are still accessible in the conclusion, then T (1) is defined as p applied to the
de-epsilonization of its premise(s).

Otherwise, while there exists a top-level e-term Vi F' that would no longer be
accessible in p’s conclusion, we add the appropriate strong quantifier and apply
the replacement {V..F + a} to the proof with a fresh variable o as well as the
replacements {V.. F' — a} (with the same variable o) for any F' that differs
from F only in the presence of nested e-terms. Finally, when there are no
more e-terms that would become inaccessible, T (1)) becomes p applied to the
proof resulting from this iterative quantifier reintroduction procedure.

If after this process the end-sequent still contains e-terms, then additional strong
quantifier inferences are added accordingly.

An example illustrating the need for replacing nested terms and for the while loop
in the last case of Definition [f] is available in Section (4.3
We can now prove soundness of the epsilonization method.

Lemma 5. If ¢ is an LJ*-proof of an end-sequent T.(S), then the end-sequent of
T () is S.

Proof. In Definition [6] all e-terms from ¢ are replaced by eigenvariables and strong
quantifier rules are applied, so that eventually formulas of the form A[e,A[z]] (or
Al Alz]]) in T:(S) are replaced by Jz.A[x] (or, respectively, Vz.A[z]), innermost
subformulas first. Notice that, at the time of the introduction of the strong quanti-
fier, the outer formulas and those bound by the e-term are indeed the same, since
possibly nested e-terms correspond to innermost quantifiers which will have been
already introduced above in the proof. O

Lemma 6. If is an LJ -proof of an end-sequent T-(S), then there is an LJ*-proof
V' of S obtainable from T 1(¢)) by reductive cut-elimination.
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Proof. The key point is to show that any violation of the eigenvariable condition
in T-1(3) can be removed by reductive cut-elimination. Assume that there is a
strong quantifier inference p in 7 1(¢)) that violates the eigenvariable condition.
This means that 7. (1)) has one of the following forms near p:

P

T, Bla] - Alq]
T, Bla] - Vz.Alz]

p:V,

For each of the cases above, there are four potential subcases. We show below
that three of them cannot occur, because they would lead to contradictions, whereas
the fourth can be fixed by reductive cut-elimination:

e Bla] propagates down to the end-sequent: « would then occur in the end-
sequent of 71(¢), but this would contradict Lemma

e Bla] propagates down to a strong quantifier inference p’ which has eigen-
variable «: this case cannot occur, because 1 would then violate the label
condition, thus contradicting the assumption that 1) is a correct LJ*-proof.

e B[a] propagates down to a weak quantifier inference p’ with an auxiliary for-
mula D[t[a]]: then p’ would have auxiliary formula D[t[e,B'[z]]] in ¢. If B
were a proper super-formula of B’, the term t[e, B’[z]] would not be accessible
and p’ would be violating the accessibility condition. If B were equal to B’,
then p’ would be occurring below p, which contradicts the fact that, in Defini-
tion [6] strong quantifier inferences such as p are introduced as low as possible.
Indeed, notice that as the weak quantifier inference occurs in the proof with
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ep-terms, it will be applied during de-epsilonization in the same place, while
the strong quantifier is only added when absolutely necessary (i.e., the term is
no longer accessible or at the end-sequent).

e B|a] propagates down to a cut: in this case, the eigenvariable violation can be
removed by shifting the cut upward, using Gentzen’s reductive cut-elimination
method.

Theorem 4 (Soundness of Epsilonization). If b T:(S), then bFry S.

Proof. Let ¢ be an LI*-proof of T.(S). Then, by Lemmas [5| and [6, 7= () is a
correct LJ*-proof of S. By Theorem (1} Fy S. O

4 Examples
This section presents a set of examples that help understand the epsilonization and

de-epsilonization of proofs. Each example demonstrates the need for some aspect of
the definitions.

4.1 Labels, Contractions and Inaccessible -terms

This section illustrates the need for different labels when contracting formulas with
inaccessible e-terms. We start with an end-sequent already considered before:

V.- Px,VzNy.~(Pz A Py) -
whose epsilonization is
—=P(1,—Px),Vz.Yy.~(Pz A Py) -

We have seen that, had labels not been used, the later sequent would admit a proof
whose de-epsilonization would generate a proof with eigenvariable violations. Taking
the labels into account, the proof found by proof search in LJ* is the following:
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P(tlr.=Px) - P(tlr =Pz) P(7l2.-Px) - P(rl2.~Px)
P(7l2 =Px), P(th .= Px) - P(tlt.=Px) A P(7l2. = Px)
P(rl2 —Px), P(ri ~Pz), ~(P(rk ~Px) A P(r2 ~Pz)) F _.
P(tl2.=Px), P(th .= Px),Vy.~(P(tlr.=Pz) A Py) - !
P(7lt .= Px),Vy.~(P(th .—~Pz) A Py) F =P(7l2.=Px) _‘_‘l
P(tlt.=Px), ~=P(1l2. =~ Px),Vy.~(P(tlt .= Pz) A Py) - v
P(rh =Pz),=~P(rl2 ~Px),Vz\y.~(Pz A Py) '
—=P(7l2.~Px),V2.Vy.~(Pz A Py) - =P(rl .-~ Px) )
—=P(th .=Px), ~—P(7l2.~Pz),V2.Vy.~(Pz A Py) ;
—=P(7!.—~Px),V2.Vy.~(Pz A Py) I

T

Note how the e-term labelled with [ is not available for the weak quantifier Vy.
Observe also how the two labels of the contracted formulas need to be different. Had
they been the same, we would be able to obtain the same proof as before, which
de-epsilonizes to an incorrect proof.

The de-epsilonization procedure constructs, in a top-down manner, the same
proof up to this point:

P(tlr.=Px) - P(tlt.=Pz) P(rl2.-Px)F P(tl2.—Px)
P(tl2.=Px), P(th.=Px) - P(tlt.=Px) A P(tl2.~Px)
P(rl2 ~Px), P(rh ~Pz), ~(P(rh ~Pa) A P(r2 ~Pz)) F |
P(tl2.~Pz), P(tht ~Px),Vy.~(P(th ~Pz) A Py) '
P(7lr.=Px),Vy.~(P(7h .~ Pz) A Py) F =P(72. =~ Px)

T

T

If the next inference, —;, were applied, the e-term 7/2.— Pz would no longer be
accessible. Therefore, it is time to introduce a strong quantifier. Since the e-term is
bound by 7, the de-epsilonization procedure introduces a V, inference and replaces
7l2 =Pz by a new fresh variable a.

P(rh —~Pz) + P(7h ~Pz) Pak Pa
Pa, P(7h .=Px) + P(tlt .= Px) A Pa
Pa, P(th =Px),~(P(t}* ~Pz) N Pa) -
Pa, P(th —~Pz),Vy.~(P(rlr ~Pz) A Py) - '
P(h ~Pz),Vy.—~(P(rlt ~Px) A Py) F -Pa
P(tlr.=Px),Yy.~(P (1 .~Pz) A Py) - VYo.~Px

-
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The re-construction of the proof is continued until the next point where a strong
quantifier is needed, for the same reason as before. The same procedure is followed,
now replacing Til.—'P:E by a new variable 8. The final result is the following valid
LJ* (and also LJ) proof:

PBF PB Paf Pa
Pa,PBF PBAPa "
Pa,PB,~(PBAPa) -

Pa, PB,Yy.~(PB A Py) -
PB,Vy—~(PBAPy) - —Pa
PB,Vy.~(PB A Py) FVz.-Px "
PB,~Vx.—Px,Vy—~(PBAPY) -
PB,~Vx.~Px,V2Ny.~(Pz A Py) !
—Vz.-Pz,VzN¥y.~(Pz A Py) - =Pp h
—V2.~Px,VzNy.~(Pz A Py) FVz.-Px "
“NVz.—~Pz, V1. —Pr,Vz. Ny —~(Pz A Py) - :l

V.~ Px,Vz.Vy.~(Pz A\ Py) +

4.2 Contraction with Distinct Labels

The example in this section illustrates the need for allowing contraction on formulas
with different constant labels. Consider the following LJ* proof of an e-free end-
sequent:

PakPa o _PBEPS
Pat3xz.Px =" PBF3z.Px /\T
Pa, P3+ dx.Px A Jx.Px 5 "
Pa,3z.Px - Jx. Pz A Jz.Px !
Jz.Pz,3z. Pz F 3z.Px A 3z.Px c;
Jx. Pz F Jz.Px A Jz.Px

Following the epsilonization procedure, the proof obtained is:
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Note how contraction must allow the two e-terms to have different constant
labels. The label in the conclusion can be arbitrary. Such flexibility makes it possible
to map the epsilonized proof to the exact intention of the original proof, which was to
use two different eigenvariables for the strong quantifier. Interestingly, this situation
only occurs if a proof is epsilonized. Had we searched for a proof of the same end-

P(ea.Pz) - P(et.Pz) _  P(&).Px)F P(eh.Pu)

P(¢*.Px)F3z.Pr "  P(b.Px) b 3z.Px . "

P(c.Pz), P(b.Px) - 3z.Px A 3. Pz "
P(el.Px) - 3x.Px A Jz.Px

C

sequent in LJ*, only one “eigenvariable” would have been used.

4.3 Nested s-terms

When sequents contain blocks of strong quantifiers or strong quantifiers inside the
scope of other strong quantifiers, epsilonization results in sequents with nested e-

terms. In this section, we look at an example of this kind.
Let F be Vz.(3y.3z.P(z,y, z) = Jw.3v.3¢.P(q,v,w)). Then T.(F) is:

P(ty, ty,t.) = Jw.Fv.3¢.P(q, v, w)

where:
o t,=10,(z,0,(05))
oty =0y(dz)
o t, =0,
* 0o =Va[dy(x),0: (2, 0y(x))]
o 3,(z) = Wlo- (@ ))(x)
L3N

° vy
® YV tlth] = T’C(P(‘Iatlth) — EIU}E"UE'qP(q,’U,’lU))

Let ¢ be the following LJ*-proof of T;(F):

P(ta,ty,tz) F Pt ty,t.)
P(tg,ty,t.) = 3q.P(q,ty,t.)

P(ty,ty,t,) - Jv.3q.P(q,v,t,)

P(ty,ty,t.) F Jw.3v.3¢.P(q, v, w)

F P(ty,ty,t;) = Jw.3v.3¢.P(q, v, w)

I
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During the top-down construction of 7. !(3), initially the three 3, inferences are
simply reapplied:

P(tm,ty,tz) = P(tmty,tz)
P(txvtyvtz) F EIQ~P(Qaty7tz)
P(ty,ty,t.) F Jv.3q.P(q,v,t.) TH
P(tg, ty,t.) F Jw.3v.3¢.P(q,v,w)

At this point, t, is ready, but applying — g would make it inaccessible. Therefore,
it is time to introduce the strong quantifier for z:

P(tya.],ty[az], az) B Pty [ez] £ [oz], o)
P(t,[a.], t[a.], az) = 3q.P(q, t, [az], o) "
P(t,[a.], t[a.], a.) F Fv.3q.P(q,v, az) "
P(t;[az],t;l[az},az) F Jw.3w.3q.P(q,v,w) "
HZ.P(t;[z],t;[z], z) b Jw.3v.3¢.P(q, v, w)

where ty [2] = t,{0.(.,.) = 2} and t},[2] = t{0.(.,.) = z}. Note that the replacement
of terms of the general form 6,(.,.) by z de-epsilonizes occurrences of £,P(.,., z)
nested inside ¢, and t,. This illustrates the need for substituting not only top-level
e-terms, but also nested e-terms in the last case of Definition [6]

Now t; [2] becomes ready and it would not be accessible anymore after application
of —g. Therefore, it is time to introduce the strong quantifier inference for y:

P(tlay], ay, ) F P(th[ay], ay, o)
P(tyloy], oy, o) - 3q.P(q, oy, o) ’
P(t)[ay], ay, az) F Fv.3q.P(q,v, ;)
P(tlayl, ay, o) F Jw.Fv.3q.P(q, v, w)
Fz.P(t!ay], ay, 2) F Fw.Fv.3¢.P(q, v, w) !
Jy.32.P(t!y],y, 2) b Fw.Tv.3q.P(q, v, w) :

t![y] is not ready yet, and the —, inference rule can be applied:
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P(tyloyl, ay, az) B P(tg[ay], oy, 02)
P(t!lay], ay, o) F 3¢.P(q, oy, )
P(t}]oy), ay, a.) F Fv.3¢.P(q,v, o)
P(t]]oy), ay, a;) F Jw.3v.3¢.P(q,v,w)
2. P(tay], ay, 2) F Fw.Fv.3¢.P(q, v, w)
Jy.3z.P(t!y],y, z) b Fw.Tv.3q.P(q, v, w)
F 3y.3z.P(t![y],y, z) — Fw.Tv.3q.P(q, v, w)

T

l

T

The fact that we had to introduce two strong quantifier inferences, de-epsilonizing
two different e-terms, before being able to reapply a logical inference rule illustrates
the need for a while loop in the last case of Definition [6]

Finally, a V,. inference rule has to be applied, because t, is now ready in the end
sequent and there are no further inferences from 1t to be reapplied:

P(og, oy, o) F Plag, oy, o)

P(og, ay,az) - 3¢.P(q, oy, )
P(og, ay, ;) F Fv.3¢.P(q,v, o)
P(oy, ay, o) F Jw.Fv.39.P(gq, v, w)
Jz.P(ag, ay, z) F Jw.3v.3¢.P(q, v, w)
Jy.3z.P(ay, y, 2) F Jw.Tv.3q.P(q, v, w)
F 3y.32.P(as, vy, 2) — Fw.Fv.3¢.P(q, v, w)
FVa.(3y.32.P(x,y, 2) — Jw.Fv.3q.P(q,v,w)) "

5 Related Work

Other methods for a Skolemization-like procedure for intuitionistic logic have been
investigated. This has been the topic of a series of papers by Baaz and Iemhoff that
study the use of an existence predicate, introduced by Scott [I1], for Skolemization.
They start by defining eSkolemization [2], a process for removing strong existential
quantifiers in intuitionistic logic. In the same paper there is a semantical proof of
completeness of eSkolemization and later on they provide a proof-theoretical proof
[4]. In [3] the authors extend the method for strong universal quantifiers, but the
solution is more ad-hoc, as it requires the addition of a pre-order to the logic and
introduces weak quantifiers. Roughly, the eSkolemization method replaces strong
occurrences of Vz. Az by E(f(x)) — A(f(x)) and strong occurrences of 3z.Ax by
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E(f(z))NA(f(z)), where f is a new function symbol. In contrast to our approach,
which only adds to the language the € and 7 operators, eSkolemization requires ex-
tending the language with infinitely many symbols, including a predicate. Moreover,
the treatment of existential and universal quantifiers is not uniform whereas in our
method those treatments are naturally dual. The calculus LJE, presented in [4],
contains different rules for the quantifiers which add the existence predicate to the
premises. Therefore, it does not have the sub-formula property. Also, the rules for
V; and J, are binary, adding yet another complexity for proof search. It is worth
noting that LJ* presents none of these issues.

The approach that comes closer to what is presented here is that of Mints |7, [§].
Although the precise relation is not easy to pinpoint and describe, it is straightfor-
ward to note important differences. Firstly, whereas Mints is concerned with the
extension of LJ by an epsilonization rule in the calculus (which acts only at whole
formulas), we consider epsilonization as a pre-processing step, acting deeply on all
strongly quantified subformulas in the end-sequent. In Mints’ calculus, the epsilo-
nization rule is essentially a strong quantifier rule that instantiates the variable by
an e-term instead of an eigen-variable. In contrast, LJ*-proofs of epsilonized end-
sequents contain no inferences that act as strong quantifier inferences in disguise. It
was a significant challenge, and one of the main distinguishing contributions of this
paper, to discover that e-terms are informative enough to tell where strong quantifier
inferences need to be introduced when de-epsilonizing. Mints also describes a con-
dition for the correctness of proofs, requiring that all sequents are mtelligen{ﬂ The
definition of intelligence is related to the definition of accessibility presented here.
However, the definition of intelligence is not local: to decide whether a sequent S is
intelligent in a proof 1, it may be necessary to look at every sequent S’ occurring
below S in v. This is undesirable in the context of bottom-up proof search, because
the whole derivation may have to be traversed and checked in order to decide if an
inference is allowed. The definition of accessibility, on the other hand, is local: to
decide if a weak quantifier inference is allowed, only its conclusion sequent needs to
be checked. Furthermore, while Mints [7} [8] restricts all inference rules (by requiring
that all sequents be intelligent), in the LJ* calculus presented here, only the weak
quantifier rules need to be restricted. Therefore, the restrictions described here are
weaker. Another difference is that Mints [7), 8] considers only the € binder, whereas
here 7 is also taken into account.

Decades later, Mints [9] proposed a new calculus where he dropped the global
intelligibility condition and adopted binary weak quantifier rules (thus following

“Mints used the adjective ocmpicienmsrii in the Russian original [7]. This was translated as
intelligent in [§]. In [I2], Soloviev uses the better translation meaningful.
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the trend of [4]) whose left premises require proving that the instantiating term
is defined. While the notion of defined is arguably more local than the notion
of intelligent, it requires proof search and is semantically inspired. Moreover, the
definition of defined is incomplete because it is defined only for top-level e-terms. It
is not clear what should be done, for example, when the instantiating term is not a
top-level e-term but contains an e-term as a sub-term. Furthermore, in Mints’ new
calculus, epsilonization is still treated as an inference rule, not as a pre-processing
step.

6 Conclusion

We have shown that, whereas Skolemization is unsound for LJ (as is well-known),
the new epsilonization transformation defined here is sound for the restricted cal-
culus LJ* proposed. Although the definitions and proofs are technically complex,
the underlying idea is conceptually very simple. The unsoundness of Skolemization
for LJ is essentially due to violations of the eigenvariable condition, which happen
implicitly and unnoticed, because Skolemization replaces eigenvariables by Skolem
terms. In the case of epsilonization, on the other hand, e-terms are informative
enough to allow us to know where strong quantifier inferences introducing their
corresponding eigenvariables would be located if the sequent had not been epsilo-
nized. This information allows us to restrict the weak quantifier rules in LJ* that
use e-terms, so that they only occur above those implicit strong quantifier infer-
ences’ locations. Consequently, as desired, de-epsilonizing LJ* proofs never results
in violations of the eigenvariable condition.

The approach presented here distinguishes itself from related work primarily by
being the only purely syntactic, deterministic (not requiring additional proof search)
and local restriction of the intuitionistic sequent calculus where a Skolemization-like
pre-processing transformation is sound.
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