Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Formalized Meta-Theory of Sequent Calculi
for Substructural Logics

Kaustuv Chaudhuri!

Inria € LIX/E'cole polytechnique, France

Leonardo Lima?

Federal University of Paraiba, Brazil

Giselle Reis®

Inria € L]X/Ecole polytechnique, France

Abstract

When studying sequent calculi, proof theorists often have to prove properties about the systems, whether it
is to show that they are “well-behaved”, amenable to automated proof search, complete with respect to
another system, consistent, among other reasons. These proofs usually involve many very similar cases,
which leads to authors rarely writing them in full detail, only pointing to one or two more complicated cases.
Moreover, the amount of details makes them more error-prone for humans. Computers, on the other hand,
are very good at handling details and repetitiveness.

In this work we have formalized textbook proofs of the meta-theory of sequent calculi for linear logic in
Abella. Using the infrastructure developed, the proofs can be easily adapted to other substructural logics.
We implemented rules as clauses in an intuitive and straightforward way, similar to logic programming, using
operations on multisets for the explicit contexts. Although the proofs are quite big, their writing took no
more than a few weeks once the correct definitions were found. This is an evidence that machine-checked
proofs of properties of sequent calculi can be obtained using a natural encoding on most proof assistants
available nowadays.

Keywords: Sequent calculus, cut-elimination, formalized proof, linear logic, Abella

1 Introduction

Sequent calculus proof systems are perhaps the most standard technique used to
formulate logics. New logics are nearly always proposed in terms of a sequent
calculus. Such proposals are usually also accompanied by certain meta-theorems
about the calculi. Cut-elimination is usually one of the first things to be established,

1 kaustuv.chaudhuri@inria.fr
2 leonardo.alfs@gmail.com
3 giselle.reis@inria.fr

©2019 Published by Elsevier Science B. V.


http://www.math.tulane.edu/~entcs
mailto:kaustuv.chaudhuri@inria.fr
mailto:leonardo.alfs@gmail.com
mailto:giselle.reis@inria.fr

CHAUDHURI, LIMA, AND REIS

as it usually entails the system’s consistency and makes it suitable for automated
proof search. Other meta-theorems include identity reduction, which shows internal
completeness of the proof system; rule permutations and inversion lemmas to establish
the polarities of connectives; and focusing theorems that establish the existence of
normal forms. Although this meta-theory is very important, the proofs are rarely
spelled out in detail, let alone formally checked by a proof assistant. One big reason
is that these proofs involve a number of cases which is sometimes exponential in the
number of rules in the system, with many of them being very similar. A common
approach in publications is to show one or two characteristic cases in detail and then
to mention that the rest is “analogous” or “trivial”.

Such informal proofs are risky. Girard himself underestimated the difficulty of
cut-elimination in linear logic with exponentials. The terminating proof needed a
much more involved inductive measure and was detailed later on in [4]. A proof of
cut-elimination for full intuitionistic linear logic (FILL) was shown to have a mistake
in [2], and the authors of the proof have later published a full corrected version [3].
A proof of cut-elimination for the sequent calculus GLSy for the provability logic
GL was the source of much controversy until this was resolved in [9] and formalized
in [5] using Isabelle/HOL. Several sequent calculi proposed for bi-intuitionistic logic
were “proved” to enjoy cut-elimination when, in fact, they did not. The mistake is
analysed and fixed in [15]. More recently an error in the cut-elimination proof for
modal logic nested systems was corrected in [13].

The repetitive and detail-intensive nature of these proofs makes them good
candidates for computerization. However, it is rare to find such proofs formalized
along the lines of their informal arguments. Indeed, formalization of these proofs
requires the formalization of details that are generally left implicit in informal
proofs. These include lemmas on sets and multisets which we take as standard (and
invisible) background. The development of this infrastructure and explicit reasoning
on context operations is what we believe makes proof theorists reluctant to formalize
meta-theoretic proofs.

We have thus decided to put this “folk wisdom” to the test and formalize the
meta-theory for several sequent calculi for various fragments of linear logic. As far
as we know, this is the first formalization of its kind. We follow the usual textbook
inductive proofs on the rank of the cut formula and/or proof heights, rewriting
cuts to smaller cuts. We have proved cut-admissibility, invertibility of inference
rules and generalized identity for several systems. Our results show that, with a
good encoding of multisets and their properties, the formalization of particular
meta-theorems can be completed quickly. Moreover, our formalizations use only
elementary theorem proving techniques that can be explained to and carried out by
undergraduate students. All that is required is a basic knowledge of proof theory
and logic programming.

We have used the proof assistant Abella for this task. Our choice is motivated
simply by our familiarity with the tool. As of now, the encoding does not use
any exclusive feature of Abella and can be reproduced in any other proof assistant
supporting induction (we have also an implementation of the multiset library and
some of the meta-theorems with proofs in Coq).

The implementation can be found online at:

2



CHAUDHURI, LIMA, AND REIS

https://github.com/meta-logic/abella-reasoning.

The paper is organized as follows. We give a brief introduction of Abella in
Section 2 and continue with the encoding in Section 3. We explain how multisets
were implemented and show how they are used to specify sequent calculus rules. The
cut-elimination proof contains many cases, one of which we explain in some detail.
By following Section 3 closely, one should be able to generalize the approach to other
sequent calculi. Other formalizations of sequent calculi and their meta-theory are
discussed in Section 4.

2 Background: Relational Reasoning in Abella

We use the interactive proof assistant Abella [1] to formalize our different meta-
theoretic proofs. The logic behind Abella is a conservative extension of intuitionistic
first-order logic; the extensions that are relevant for this paper are:

e The pure simply typed A-calculus as the term language, together with a primitive
equality predicate on such terms that implements af8n-equivalence with all uninter-
preted constants treated as constructors. The logic is built atop this simply typed
term language following the design of Church’s simple theory of types. There
is a type prop dedicated to formulas of the logic, and all logical connectives are
implemented as constants of target type prop; for example, conjunction A has
type prop — prop — prop, although we write it inline as A A B instead of as
N A B.

* Least and greatest fixed point definitions for predicates, 7.e., constants of target
type prop. Such definitions come equipped with corresponding induction and
co-induction rules for reasoning about assumptions and conclusions, respectively,
and may additionally be unfolded to replace any instance of the predicate by its
corresponding body.

* Support for extensional universal (V) quantification. Extensional variables, called
etgenvariables, are allowed to be instantiated by arbitrary terms when reasoning
about equations or during case-analysis. This can be highlighted by the formula
Vz.(x = ¢) D p(x) D p(c) (for some constant ¢), which is provable because
analyzing? = = c has the effect of instantiating = with ¢, reducing the proof
obligation to p(c) D p(c). However, Yx.z # c is not provable® — for instance, it
would be false in a model where ¢ is the only element. Abella also has existential
quantification (3) and an intensional quantification (V) that mediates between
the two; the latter of these is not relevant for this particular paper.

A comprehensive introduction to Abella, including a discussion of its features that
are not used in this paper, may be found in the tutorial [1]. The proof theory of G,
the logic underlying Abella, is described in [7,8] and references therefrom.

Unlike many other proof assistants in popular use—such as Coq, Agda, Isabelle,
etc.—Abella follows a relational approach rather than a functional approach to
specifications. The equational theory on terms in Abella cannot be extended by

4 More precisely, using the left-introduction rule for equality in the sequent calculus G [7,8].
5 We define s # t to be the formula (s =) D L.


https://github.com/meta-logic/abella-reasoning

CHAUDHURI, LIMA, AND REIS

functional definitions, and hence the term language is just ordinary A-terms built
from variables, constants, A-abstraction, and application. If we declare a type nat of
natural numbers with two constants z : nat and s : nat — nat, then the definition of
addition plus would be given in terms of a relation of type nat — nat — nat — prop
that relates the first two arguments to their sum in the third argument. Concretely,
this definition would be specified as follows:

Define plus : nat -> nat -> nat -> prop by

; plus z X X
; plus (s X) Y (s Z) := plus X Y Z.

This definition consists of two definitional clauses which are separated from each other
by semi-colons, and each clause consists of a head and, optionally, a body separated by
:=. Each clause is also implicitly universally (V) closed over its capitalized identifiers.
The first clause above declares that for any X, the atom plus z X X is true (an
omitted body in a clause is taken to stand for true). The second clause says that for
every X, Y, and Z, the atom plus (s X) Y (s Z) is true if and only if plus X Y Z
is true. This predicate is, moreover, given a least fixed point interpretation, which
means that there are no other ways of deriving plus s t u (for any terms s, t, and
u) besides using one of the two definitional clauses. Note that definitional clauses for
a predicate do not need to have non-overlapping heads, nor is the body of a clause
required to use only subterms of the terms at the head. Thus, iteratively unfolding
a relation can be both non-deterministic and non-terminating.

To prove a theorem about such least fixed point definitions, we use the built in
induction tactic that behaves identically for every definition. As an illustration,
consider the following theorem:

Theorem plus_z_2 : forall X, plus X z X.

To prove this theorem, we need to proceed by induction on the structure of X (which
is of type nat). However, as the only induction principles in Abella apply to least
fixed point definitions, we need to reify the structure of nats as such a definition:

Define is_nat : nat -> prop by
; is_nat z
; is_nat (s X) := is_nat X.

We can then state the theorem as follows: 6

Theorem plus_z_2 : forall X, is_nat X -> plus X z X.

Note that the type signature of constants is not itself endowed with any induction
principles because the signature is open-ended; it may always be extended with
new constants of type nat, for instance. However, no such extension can falsify the
theorem since the is_nat predicate is not extensible.

The proof begins by the tactic invocation induction on 1, which indicates
induction on the first assumption is_nat X, called the inductive argument. Since
there are two definitional clauses for is_nat, there will be two cases to consider.
In the first case, we would obtain the equation X = z in order to match is_nat X
against the clause head is_nat z; this in turn instantiates the (eigen)variable X to
z, leaving us with the obligation plus z z z, which is easily proved by the first
clause of plus. In the second case, we would obtain X = s X1 where X1 is a new

6 Concrete syntax for O, T, L, A, V, ¥, 3, and V: ->, true, false, /\, \/, forall, exists, and nabla.

4



CHAUDHURI, LIMA, AND REIS

variable for which we know is_nat X1. The goal now is plus (s X1) z (s X1),
which we can unfold using the second clause of plus to reduce it to plus X1 z X1.
Thus, we are left with the obligation of proving plus X1 z X1 from the assumption
is_nat X1.

To close this loop inductively, Abella reasons by induction on the size of the
inductive argument, which in this case is is_nat X.” The initial invocation of the
induction tactic had produced an inductive hypothesis IH:

IH : forall X, is_nat X * -> plus X z X

Here, is_nat X * stands for an instance of is_nat that is strictly smaller than the
initial is_nat X in the goal. The goal is, in fact, rewritten to:
forall X, is_nat X @ -> plus X z X

where the annotation @ indicates that its size is such that every *-annotated instance
is strictly smaller. Unfolding the assumption is_nat X @ reduces its size strictly, so
that in the case of its second definitional clause we get a new assumption is_nat
X1 * (where X = s X1). This can now be fed to the IH to obtain plus X1 z X1,
which is what we needed to finish the proof.

Size annotations represent (strong) induction on linearly ordered sizes, but meta-
theoretic proofs abound with inductions on more complex orderings, particularly
lexicographic orderings. While the logic G underlying Abella has a general induction
rule that can represent any (computable) well-ordering, the implementation of
it using size annotations and circular inductive hypotheses in Abella need to be
generalized further for lexicographic induction. This is achieved by means of size
levels that are created by nested invocations of the induction tactic.

Nested inductions are best explained by an example: consider this relational
definition of the Ackermann function, where ack X Y K stands for K = A(X,Y).

Define ack : nat -> nat -> nat -> prop by

; ack z X (s X)

; ack (s X) z K := ack X (s z) K

; ack (s X) (s Y) K := exists K1, ack (s X) Y K1 /\ ack X K1 K.

We may wish to show that this is a total relation, something that famously cannot
be done with induction on natural numbers alone:

Theorem ack_total : forall X Y, is_nat X -> is_nat Y ->
exists K, is_mat K /\ ack X Y K.

In this case, we want to induct using the lexicographic ordering of the sizes of
is_nat X and is_nat Y, i.e., the inductive hypothesis may be used if the size of
is_nat X is strictly smaller, or it stays the same and that of is_nat Y is strictly
smaller. In Abella we write this using the following invocation:

induction on 1. induction on 2.

This produces two inductive hypotheses and modifies the goal as follows:

IH1 : forall X Y, is_nat X * -> is_nat Y -> ..
IH2 : forall X Y, is_nat X @ -> is_nat Y *x*x ->

7 Every instance of a least fixed point definition is, intuitively, equivalent to L unless it can be shown to
be true after unfolding it a finite number of times. Thus, non-terminating definitions with clauses such as
p X := p (s X) would be interpreted as L. The size of such defined atoms is defined in such a way that it
is larger than the number of times it needs to be unfolded to determine that it is true. The precise theory of
these size annotations is out of scope for this paper but can be found in [6].

5



CHAUDHURI, LIMA, AND REIS

forall X Y, is_nat X @ -> is_nat Y @@ -> ...

where ... in each case is exists K, is_nat K /\ ack X Y K. The hypothesis
IH1 is familiar from before: it just means that is_nat X * is strictly smaller than
is_nat X @. The hypothesis IH2, on the other hand, has is_nat Y ** which is
strictly smaller than is_nat Y @@. This hypothesis also has an assumption is_nat
X @ which can only be supplied by the corresponding assumption—unmodified!—from
the rewritten goal. Note that the @ and @@ annotations have no relation to each
other except to denote that the latter was introduced while an induction on the
former was in progress. Thus, is_nat X @ would unfold to produce * annotations
and is_nat Y @@ would unfold to produce ** annotations.

In the rest of this development, we will follow a certain style of specifications
where typing predicates such as is_nat are not explicitly assumed in proofs but are
rather produced by inversion on other predicates. Once again, an example illustrates
it best: consider the plus relation again, but rewritten so that the following theorem
holds of it:

Theorem plus_is : forall X Y Z, plus X Y Z ->
is_nat X /\ is_nat Y /\ is_nat Z.

Writing it this way means that we never need to assume both is_nat X and plus
X Y Z, for instance, since the former is derivable from the latter. Here is how we
modify the definition of plus to guarantee plus_is:

Define plus : nat -> nat -> nat -> prop by
; plus z X X := is_nat X
; plus (s X) Y (s Z) := plus X Y Z.

The proof of plus_is is by straightforward induction on plus X Y Z. Note that we
could have sprinkled more is_nat conjuncts in the bodies of the definitional clauses,
but the above choice is sufficient. We will opt to alter the natural definitional clauses
as minimally as possible to yield the necessary inversion lemmas.

3 Encoding an Object Language

In what follows we distinguish between object logic, the logic and proof systems
for which we are formally establishing meta-theorems, and meta logic, which is the
reasoning logic G that forms the basis of Abella.

3.1 FEncoding Object Formulas

In this paper we will focus on propositional linear logics, both to simplify the
presentation and to avoid a diversion into representations of object type systems.
Formulas of linear logic are encoded as constants of target type o, which is a type
reserved in Abella for a particular specification language based on higher-order
hereditary Harrop formulas. However, we will not be using the specification logic of
Abella in this paper, so we reuse the o type to get access to the convenient syntax
of lists that is built in for lists of os, using the type olist.®

8 Abella has a monomorphic type system. A polymorphic extension is in progress and when that is available
there will only be a single parametrically polymorphic type of lists.

6



CHAUDHURI, LIMA, AND REIS

Type atom, natom atm -> o.
Type tens, par o -> o0 -> o.
Type one, bot o.

Type wth, plus o -> o0 -> o.
Type top, zero o.

Define is_fm : o -> prop by
is_fm (atom A)
is_fm (natom A)

; is_fm (tens A B) := is_fm A /\ is_fm B
; is_fm one

; is_fm (par A B) := is_fm A /\ is_fm B
; is_fm bot

; is_fm (wth A B) := is_fm A /\ is_fm B
; is_fm top

; is_fm (plus A B) := is_fm A /\ is_fm B

is_fm zero.

Fig. 1. Definitions of formulas

The definition of linear logic formulas for a one-sided formulation of MALL is
given in Figure 1. We define a new basic type atm of predicates; since type signatures
are open-ended in Abella, our development will be parametric over the inhabitants
of this type. From this type, atoms and negated atoms are built using atom and
natom respectively. We keep formulas in negation-normal form in the one-sided
formulation, so the only formally negated formulas are atoms. Together with these
atoms, we define the predicate is_fm for inducting on the structure of formulas.

3.2  Multisets

The crucial ingredient in the representation of a one-sided sequent calculus for MALL
is the definition of MALL contexts, which must satisfy the following desiderata.

(i) Given two contexts I' and A, we must be able to tell when they are struc-
turally identical, meaning that they contain the same elements with the same
multiplicities.

(ii) Given contexts I' and A and a formula A, we must be able to recognize when
adding A to I' results in a context that is structurally identical to A. This
operation is required in order to implement inference rules as it is used to
represent adding the principal formula in the conclusion of the rule, and the
operands of the principal connective (if relevant) to the premises.

(iii) Generalizing this further, given three contexts I'; A, and ©, we must be able
to say when adding all the elements of A to I' results in a context that is
structurally identical to ©, i.e., © is the join or the multiset union of I' and A.
This operation is not only required for implementing multiplicative rules such
as ®, but also for defining the cut rule(s).

There is a wider than expected design space here. A first attempt might be
to simply use olist as our representation of contexts, with addition of elements
represented by list consing (::) and context joining with list append. This makes
inductive reasoning on contexts rather straightforward, but, because linear contexts
are structurally identical modulo exchange, it requires adding explicit exchange
rules to the system, which complicates the meta-theory. An alternative that works
is still to use olist as our representation, but to relax the notion of structural
identity as follows: two lists are structurally identical if one is a permutation of the

7



CHAUDHURI, LIMA, AND REIS

Type is_o o -> prop.

Define is_list : olist -> prop by

; is_list nil

; is_list (A :: L) := is_o A /\ is_list L.

Z adj J A K : K is J with A inserted somewhere
Define adj : olist -> o -> olist -> prop by

; adj L A (A :: L) := is_o A /\ is_list L

; adj (B :: K) A (B :: L) := is_o B /\ adj K A L.

% merge J K L : J union K equals L.

Define merge : olist -> olist -> olist -> prop by

; merge nil nil nil

; merge J K L := exists A JJ LL, adj JJ A J /\ adj LL A L /\ merge JJ K LL
; merge J K L := exists A KK LL, adj KK A K /\ adj LL A L /\ merge J KK LL.
% perm J K : J and K have the same elements

Define perm : olist -> olist -> prop by
; perm nil nil
; perm K L := exists A KK LL, adj KK A K /\ adj LL A L /\ perm KK LL.

Fig. 2. Implementation of multisets.

other. Thus, we need a predicate perm : olist -> olist -> prop to recognize
list permutations.

To define the addition operation with this modified notion, we can continue
to use list cons, but this will still require an explicit exchange rule. Instead, we
define a generalized cons operation, called adj, that adds an element somewhere
in an olist, not necessarily at the head. Note that this definition is still sensitive
to the order of elements; for example, adj [b, c¢] a [a, b, c] holds, whereas
adj [b, c] a [a, c, b] does not. Given this definition, it is a simple matter to
define perm by induction: two lists are permutatively equal if they are produced by
adj-ing the same elements. Finally, to define the join of olists up to permutations,
we simply iterate this process: an olist is the join, written merge, of two olists if
it is produced by adj-ing their elements.

The encoding of multisets we have just described is given in Figure 2. It takes
adj as primitive, and builds perm and merge on top. We may conceivably have
taken perm as primitive and defined the other operations in its terms, or some other
combination, but we found our choice to be rather intuitive. Moreover, Abella’s
built in search tactic, which searches for simple proofs of bounded depth, is often
able to automatically derive perm and merge instances.

The files 1ib/merge.thm and 1ib/perm.thm contain theorems about multisets
that are used extensively on the transformations of sequent calculus proofs. These
include simple properties, such as merge’s stability modulo permutation:

Theorem perm_merge_1 : forall J K L JJ,
merge J K L -> perm J JJ -> merge JJ K L.
We also require more complicated lemmas, such as the associativity of merge.
Theorem merge_assoc : forall J K L JK KL JKL1 JKL2,
merge J K JK -> merge K L KL ->
merge J KL JKL1 -> merge JK L JKL2 ->
perm JKL1 JKL2.
This can be depicted more evocatively as follows, where the arrows define the first
two arguments to merge and ~ denotes perm.

8



CHAUDHURI, LIMA, AND REIS

. FI,A FTs,B FT,A B LT
T init _——— ® — 1 3 1
Fal,a FI,12,A®B 1 FT,A%B FT, L
FI,A FI,B . FTLA FT,B
FT,A&B FT,T Fr,AeB ~' FT,AeB 2

Fig. 3. One-sided sequent calculus for MALL

Define mall : olist -> prop by
; mall L := exists A, adj (natom A :: nil) (atom A) L
; mall L := exists A B LL JJ KK J K,
adj LL (tens A B) L /\ merge JJ KK LL /\
adj JJ A J /\ mall J /\ adj KK B K /\ mall K
; mall (one :: nil)
; mall L := exists A B LL J K,
adj LL (par A B) L /\ adj LL A J /\ adj J B K /\ mall K
; mall L := exists LL, adj LL bot L /\ mall LL
; mall L := exists A B LL J K,

adj LL (wth A B) L /\ adj LL A J /\ mall J /\ adj LL B K /\ mall K
; mall L exists LL, adj LL top L

; mall L exists A B LL J, adj LL (plus A B) L /\ adj LL A J /\ mall J
; mall L exists A B LL J, adj LL (plus A B) L /\ adj LL B J /\ mall J.

Fig. 4. Encoding of one-sided MALL
K L
JK KL

JKL1 ~ JKL2

J

Proving this theorem requires establishing that perm is an equivalence—specifically
that it is transitive—which has a surprisingly unintuitive inductive proof. Such
properties are usually taken for granted in informal proofs of cut-elimination. Never-
theless, our experience has been that every property of multisets needed to formalize
cut-elimination is proved by straightforward induction.

3.3 One-Sided MALL

We have used the above encoding of multi-sets to define several one and two-sided
sequent calculi for fragments of classical linear logic. Here we give an illustration of
the one-sided multiplicative-additive fragment (MALL). Sequents in this fragment
are of the form - I', whose inference rules (sans cut) can be found in Fig. 3. The
sequent judgement - I' is encoded as the inductively defined atom mall L, where
L represents I'. The definition of mall is given in Fig. 4. Each definitional clause
describes, precisely, one of the rules of the sequent calculus, where the head of the
clause defines the conclusion of the inference rule, and the bodies the premises.
The second definitional clause, for instance, first uses adj to remove the principal
formula tens A B from L, yielding LL; this is then divided into JJ and KK using
merge, after which each operand of the ® is added to one of the components to
build a corresponding mall premise.

Note that we do not have an explicit clause for exchange. Nevertheless, we can

9



CHAUDHURI, LIMA, AND REIS

Define dual : o -> o -> prop by
; dual (atom A) (natom A)

; dual (tens A B) (par AA BB) := dual A AA /\ dual B BB
; dual one bot
; dual (plus A B) (wth AA BB) := dual A AA /\ dual B BB

dual zero top.

Fig. 5. An asymmetric duality predicate.

establish the following theorem by a straightforward induction.
Theorem mall_perm : forall K L, mall K -> perm K L -> mall L.

Note that the theorem itself says nothing about the sizes of mall K and mall L, even
though it is the case that exchange is height-preserving admissible in the sequent
system. The one-sided cut-admissibility theorem will therefore need to be set up in
such a way that the size of the result of applying a permutation is not relevant for
the inductive hypotheses.

In fact, we will set up the one-sided formulation in such a way that only the
height of the derivation containing the positive variant—in the sense of focusing—of
the cut formula is relevant. To this end, we define an asymmetric predicate dual
that relates a positive formula with its dual, depicted in Fig. 5. For the negative
formulas, which are the second arguments to dual, we will instead prove inversion
lemmas by straightforward induction.

Theorem bot_inv : forall J L, mall L -> adj J bot L -> mall J.
Theorem par_inv : forall L JJ A B,

mall L -> adj JJ (par A B) L ->

exists KK LL, adj JJ A KK /\ adj KK B LL /\ mall LL.
Theorem wth_inv : forall L JJ A B,

mall L -> adj JJ (wth A B) L ->

exists KK LL, adj JJ A KK /\ mall KK /\ adj JJ B LL /\ mall LL.

The cut-admissibility theorem then uses our asymmetric dual predicate as follows:
Theorem cut : forall A B JJ J KK K LL,
dual A B ->
adj JJ A J -> mall J ->
adj KK B K -> mall K ->
merge JJ KK LL ->
mall LL.

The proof proceeds by a nested induction on the first and third assumptions. This
nesting encodes the following measure for appealing to the inductive hypotheses:
either the rank decreases because of case analysis of dual A B, or the rank stays
the same and the height of mall J, which stands for the derivation that contains
the positive half of the cut formula pair, decreases.

To illustrate the proof, here is the case where the final rule to be applied in the
derivation of mall Jis ®. Intuitively, we wish to implement the following reduction:

&
o » > kI3, AL o BL )
1 2 P —_— -
FT1,A  +T9,B < D, FTs,B FI3, A+, B: wt
FI,I2,A® B FTI3, AL o BL -~ FTp, A Ty, I3, AL
FT,Ts,T5 cut FT1,T,Ts cut

The cut is reduced to two cuts of lower rank, even though the right premise of the
cuts can have larger sizes. Note the appeal to the inversion principle for ’g.
In the proof, this corresponds to the following proof state:

10



CHAUDHURI, LIMA, AND REIS

IH : forall A B JJ J KK K LL, dual A B * -> adj JJ A J -> mall J ->
adj KK B K -> mall K -> merge JJ KK LL -> mall LL

H2 : adj JJ (tens Al B1l) J

H4 : adj KK (par AA BB) K

H5 : mall K

H6 : merge JJ KK LL

H7 : adj LL1 (tens A1 B1) J

H8 : merge JJ1 KK1 LL1

H9 : adj JJ1 A1 J1

H10 : mall J1 *x*

H11 : adj KK1 B1l K1

H12 : mall K1 =*x

H14 : perm JJ LL1

H15 : dual A1 AA x*

Applying par_inv to H4 and H5 yields the new hypotheses:

H17 : adj KK AA KK2

H18 : adj KK2 BB LL2

H19 : mall LL2
The next step is to create the context I's, I's, AT which is the conclusion of the first
cut on B. In the current proof state, this corresponds to merging KK1 (I'y) and KK2
('3, A1), After merging the contexts, we can apply the inductive hypothesis IH,
corresponding to the cut on B, which gives us the following new hypotheses:

H22 : merge KK1 KK2 L

H23 : mall L
Now we need to apply the cut on A, but to build the context of this cut we need
to perform a few operations. First, we need to discern AA (A1) from the context
L (I'y,T'3, AY). This is done via the merge_unadj_2 theorem, which is part of the
library of multisets.

Theorem merge_unadj_2 : forall J K L KK A,

merge J K L -> adj KK A K -> exists LL, adj LL A L /\ merge J KK LL.

After applying this lemma, we will have a variable LL3 (I'y, ') which we can thus
merge with JJ1 (I'1) to get the conclusion of the cut on A. The IH can now be
applied to obtain the following new hypotheses.

H24 : adj LL3 AA L

H25 : merge KK1 KK LL3

H28 : merge JJ1 LL3 L1

H29 : mall L1
The case is nearly complete: we just need to show that L1 is a permutation of LL,
and then appeal to mall_perm on H29. Observe that they represent the same context
I'1, Ty, T's but were constructed differently: LL is (I'1,'y), I's while L1 is I'y, (I', I's).
We can first apply merge_perm_1 to H6 and H14 to obtain:

H30 : merge LL1 KK LL

Finally, we can apply merge_assoc to H8, H25, H26, and H30 to obtain the required:

H31 : perm L1 LL

3.4  The Exponential Case

While the MALL cut-elimination proof is long in details, it is not particularly difficult
since there is always a single cut to eliminate. The picture gets considerably more

11



CHAUDHURI, LIMA, AND REIS

complicated with the exponentials, since a single cut rule is no longer sufficient,
or, to be more precise, the termination measure for eliminating cuts is much more
complex. The main problem is with permuting cuts past contraction rules:

D
T, A £
D ! €1 €1
> < Frr,A 0 R FDp 24t At
FTLA F g, 7AL, 741 contr F 70, 1A F 701, Ta, 2AL .
For 1A F o, 7AL w -~ P LT cut
F 70, s 70,0, oM

The instance of cut’ is problematic, since neither premise is technically of strictly
lower measure: the height and cut-rank is the same in the left-premise, and the right
premise is the result of a cut that can be arbitrarily larger.

This problem can be solved in a number of ways, such as by including the number
of contractions on the cut-formulas as part of the measure. However, to correctly
formulate such a measure, we would need to incorporate multiset orderings, which is
not currently supported by Abella’s size annotations. We therefore use a different—
but still standard—solution of moving to a dyadic sequent calculus with sequents of
the form F I'; A where I' is interpreted as a set— i.e., admitting contraction and
weakening—that accumulates the ?-formulas. This context is treated additively in
binary rules and is allowed to be non-empty in axiomatic rules.

Importantly, with this separation of the context into zones, we have to increase
the number of cut principles to account for occurrences of cut-formulas in both zones.

Specifically, the dyadic formulation requires two cuts:
FT;ALA FT; A, AL FT A FT,AL A

FT AL Ag cut FTIA ucut

The conditions for appealing to the inductive hypothesis is now more complicated.
An IH can be used if the cut-rank is smaller, or if the derivation with A is of lower
height, but in the case where both stay the same we can reduce a cut to a ucut. The
issue with contractions above reappears as an issue with dereliction as follows:

& D E
FT, AL A, AL FT; A FT, AL A, AL
D — D ucut
FT; A FT, AL A - FT A FT;A AL
FT,A cut FT,A eut

However, since a ucut is allowed to justify a cut, there is no termination issue.

Formalizing this proof requires a few modifications to the representation of
MELL (multiplicative exponential linear logic) sequents, which are now given as a
ternary predicate mell : nat -> olist -> olist -> prop. The first argument
to mell is an explicit bound on the heights of derivations, which allows us to reason
explicitly about the height instead of in terms of the implicit sizes of least fixed point
definitions. This height is explicitly reduced by one in every recursive occurrence of
the predicate in the bodies of its definitional clauses; for example, here is the clause
corresponding to ®:

; mell (s X) QL L :=
exists A B LL, adj LL (tens A B) L /\
exists JJ KK, merge JJ KK LL /\
(exists J, adj JJ A J /\ mell X QL J) /\
(exists K, adj KK B K /\ mell X QL K)

12



CHAUDHURI, LIMA, AND REIS

To encode the ordering between the two cuts, we need to induct on an additional
weight parameter to the cut theorem that determines the kind of cut. We encode it
in Abella as follows:

Kind weight type.

Type heavy, light weight.

Define is_weight : weight -> prop by

; is_weight light

; is_weight heavy := is_weight light.
Note that is_weight heavy and is_weight light are both true, but the former
requires strictly more unfolding operations to derive it. This is sufficient to order
the two cuts, which we write as follows:

Theorem cut : forall A B X W,
dual A B -> is_nat X -> is_weight W ->

(W = light /\

forall JJ J KK K QL Y LL,
adj JJ A J -> mell X QL J ->
adj KK B K -> mell Y QL K ->
merge JJ KK LL ->
exists Z, mell Z QL LL)

\/ (W = heavy /\
forall QL QQ K Y,
mell X QL (A :: nil) ->
adj QL B QQ -> mell Y QQ K ->
exists Z, mell Z QL K).

The first disjunct represents cut, while the second is ucut. The proof then begins:

induction on 1. induction on 2. induction on 3.

which encode the required lexicographic measure. Observe that once the theorem is
proved, each disjunct can be individually obtained by instantiating W with light
and heavy respectively.

3.5 Two-Sided Calculi

We have also implemented the meta-theory of the two-sided sequent calculus for
MALL. The big differences between the one-sided and two-sided formulations are
that each connective has left and right introduction rules, and that the cut rules
apply to formulas on either side of the sequent arrow rather than in terms of duality.
Hence, we reason directly on is_fm instead of in terms of an asymmetric dual
predicate, which in turn means that we do an additional nested induction instead of
appealing to inversion lemmas. Cuts are now permuted upwards in both premise
derivations until they become principal. While the proofs are now longer because
of the larger number of inference rules, the ingredients remain largely the same. It
is worth noting that the cut permutations proved in the two-sided system can be
used to show strong normalization of a cut-elimination strategy for MALL, given an
ordering of the cuts.

4 Related work

We are certainly not the first to formalize a cut-elimination proof in a proof assistant.
We discuss here a few other projects on this direction and compare them with our
approach. This list is far from exhaustive.

13



CHAUDHURI, LIMA, AND REIS

Closest to our approach (in the sense that sequents and multisets are encoded)
we can cite [5] and [18]. In [5] the authors propose a generic method for formalizing
sequent calculi in Isabelle/HOL, making all lemmas and theorems parametric on a
set of rules. For the main cut-elimination theorem, weakening must be admissible.
They have proved cut-elimination for the sequent calculus GLSy for provability
logic, although in practice they proved the admissibility of multi-cut instead of cut
itself (the rules are shown to be equivalent for their system). The use of multi-cut is
justified to avoid the complicated cases where the cut-formula is contracted, which
is also our approach to exponentials.

A proof of cut-elimination for coalgebraic logics by Pattinson and Schroder was
formalized in Coq in [18]. The formalization uncovered a few mistakes in the original
proof which were discussed with Pattinson and Schréder and corrected. The author
has implemented multisets as setoids in Coq with lists as the underlying type and
permutation as the equivalence relation. Our treatment of multisets is largely similar.
The author also chose to define a type for heterogeneous lists for lists of a fixed size
as part of the encoding. As in [5], the proof is parametrized by a rule set.

To avoid dealing with explicit representations of contexts as multisets, a common

approach is to find a different representation for sequent calculus rules which mention
explicitly only the principal and auxiliary formulas. This is the path followed
n [14], [17], [10] and [19]. In [14] the author annotates sequents of the calculus
considered with proof terms, reducing cut-elimination to a type checking problem
on those terms. Since the logical framework is intuitionistic, the structural rules
of contraction and weakening are forced to be admissible for all such proof calculi.
One of the obvious advantages of this approach is avoiding explicit representations
of multisets; on the other hand, the adequacy of the term rewriting system to the
actual sequent calculus rules is only an informal argument that is not independently
verified.

The method developed in [14] was used in [17] for formalizing a proof of com-
pleteness of focusing for intuitionistic logic. The author avoids having to show
“tedious invertibility lemmas” by using a new proof of completeness that follows
from cut-elimination and generalized identity. A number of meta-theoretical prop-
erties are proved in this formalization. It would be interesting to see if his proof
of completeness of focusing could be formalized in Abella using our results. One
commonality between our approach and that of [17] is the use of cut weights to set up
a lexicographic measure. Another formal proof (in Coq) of completeness of focusing
for several systems was developed in [10], using an algebraic interpretation of the
logic which requires some assumptions on the sequent calculus, namely harmony (i.e.,
rules should come in “dual” pairs) and the admissibility of weakening and contraction.
It is difficult to see how these ideas can be generalized to the substructural case.

Other linear logic encodings in various proof assistants can be found in [11,12,16].
The goal of those works however was to obtain proof search engines for linear logic,
so there are no proofs of meta-theoretical properties of the encoded systems. In [11],
the author implements linear logic in Isabelle and uses a calculus with exchange
rules to avoid having to implement contexts modulo permutation. The same solution
is used in [16] for implementing linear logic in Coq, although a later implementation

14



CHAUDHURI, LIMA, AND REIS

by Cowley ? uses permutation of contexts. In [12] linear logic is again implemented
in Isabelle for proof search, but this time rules are encoded using multisets. On
top of regular linear logic rules, the authors also add a set of “macro-rules” to the
system for facilitating proof search.

5 Conclusion

We have shown an implementation of a “textbook” proof of cut-elimination, using the
rewrite rules a la Gentzen, for various fragments of linear logic in the proof assistant
Abella. This is the first formalization of cut-elimination for linear logic to the best of
our knowledge. We have also implemented proofs of other meta-theoretical properties
using the same techniques. It required the implementation and proofs of several
lemmas about multisets, which we believe can be re-used for meta-theoretical proofs
about other calculi. The encoding of sequent calculus rules is quite intuitive and
similar to a logic program.

While formalizing this proof we have learned a few interesting things. First of
all, it was good to realize that proof assistants are already usable enough to handle
such proofs. We were skeptical about this at some points. In fact, we have started
translating the Abella code to Coq. The multiset library is fully specified and we have
some proofs for meta-theorems of MLL. Because Coq allows for fine programmatic
control of proof search, nearly all the required lemmas about the representation of
multisets are handled with single invocations of a simplification tactic tailor-made for
reasoning about multi-sets (written using Ltac). On the other hand, Coq’s induction
is more primitive than Abella’s and requires making the induction measure explicit,
which in turn complicates meta-theoretic proofs, particularly those that rely on
lexicographic induction. Of course this might be caused by using an “Abella way of
thinking” when implementing the proofs in Coq. We noticed that a familiarity with
the proof assistant plays a big role when finding out the lemmas to prove and the
proof strategy to follow. Since each proof assistant is unique, reproving something
in another software is not so straightforward.

This being said, and despite the fact that we successfully finished several such
proofs, we must admit that the amount of boilerplate in the proofs shows us that
this approach is not yet ready for general purpose use. The trade-off between having
a formalized proof and the time taken to formalize it is still too big for the average
proof theorist. We believe this to be a general problem with proof assistants—not
just with Abella—given the related work we have found and our experience in porting
the code to Coq. Modularity techniques in proof assistants are already a great help
(indeed we have one implementation of multisets which is used by all encodings),
but there is still a considerable gap between the kinds of informal meta-theoretic
proofs one finds in the average proof theory paper and the formalizations. We are
investigating better ways to deal with the tedious and repetitive parts of proofs.

9 https://github.com/acowley/LinearLogic

15


https://github.com/acowley/LinearLogic

CHAUDHURI, LIMA, AND REIS

References

[1] Baelde, D., K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu and Y. Wang, Abella: A system
for reasoning about relational specifications, Journal of Formalized Reasoning 7 (2014).
URL http://jfr.unibo.it/article/download/4650/4137

[2] Bierman, G., A note on full intuitionistic linear logic, Annals of Pure and Applied Logic 79 (1996),
pp. 281 — 287.
URL http://wuw.sciencedirect.com/science/article/pii/0168007296000048

[3] Braiiner, T. and V. de Paiva, Cut-elimination for full intuitionistic linear logic, Technical Report

BRICS-RS-96-10, BRICS, Aarhus, Danemark (1996), also available as Technical Report 395, Computer
Laboratory, University of Cambridge.

[4] Danos, V., “Une Application de la Logique Linéaire a I'Etude des Processus de Normalisation
(principalement du A-calcul),” Ph.D. thesis, Université Paris (1990).

[5] Dawson, J. E. and R. Goré, Generic methods for formalising sequent calculi applied to provability
logic, in: Logic for Programming, Artificial Intelligence, and Reasoning - 17th International Conference,
LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings, 2010, pp. 263-277.

URL http://dx.doi.org/10.1007/978-3-642-16242-8_19

[6] Gacek, A., “A Framework for Specifying, Prototyping, and Reasoning about Computational Systems,”
Ph.D. thesis, University of Minnesota (2009).

[7] Gacek, A., D. Miller and G. Nadathur, Nominal abstraction, Information and Computation 209 (2011),
pp. 48-73.

[8] Gacek, A., D. Miller and G. Nadathur, A two-level logic approach to reasoning about computations,
Journal of Automated Reasoning 49 (2012), pp. 241-273.
URL http://arxiv.org/abs/0911.2993

[9] Goré, R. and R. Ramanayake, Valentini’s cut-elimination for provability logic resolved, The Review of
Symbolic Logic 5 (2012), pp. 212-238.
URL http://journals.cambridge.org/article_S1755020311000323

[10] Graham-Lengrand, S., “Polarities & Focussing: a journey from Realisability to Automated Reasoning,”

Habilitation thesis, Université Paris-Sud (2014).
URL http://hal.archives-ouvertes.fr/tel-01094980

[11] Groote, P., Linear logic with isabelle: Pruning the proof search tree, in: P. Baumgartner, R. Hahnle and
J. Possega, editors, Theorem Proving with Analytic Tableauzr and Related Methods: 4th International
Workshop, TABLEAUX (1995), pp. 263-277.

URL http://dx.doi.org/10.1007/3-540-59338-1_41

[12] Kalvala, S. and V. D. Paiva, Mechanizing linear logic in isabelle, in: In 10th International Congress of
Logic, Philosophy and Methodology of Science, 1995.

[13] Marin, S. and L. Strafiburger, Label-free modular systems for classical and intuitionistic modal logics,
in: Advances in Modal Logic 10, invited and contributed papers from the tenth conference on ”Advances
in Modal Logic,” held in Groningen, The Netherlands, August 5-8, 2014, 2014, pp. 387-406.
URL http://www.aiml.net/volumes/volume10/Marin-Strassburger.pdf

(14

Pfenning, F., Structural cut elimination, in: Proceedings of the 10th Annual IEEE Symposium on Logic

in Computer Science, LICS ’95 (1995), pp. 156—.
URL http://dl.acm.org/citation.cfm?id=788017.788741

[15] Pinto, L. and T. Uustalu, Proof search and counter-model construction for bi-intuitionistic propositional
logic with labelled sequents, in: M. Giese and A. Waaler, editors, Automated Reasoning with Analytic
Tableauzr and Related Methods: 18th International Conference, TABLEAUX 2009, Oslo, Norway, July
6-10, 2009. Proceedings (2009), pp. 295-309.

URL http://dx.doi.org/10.1007/978-3-642-02716-1_22

[16] Power, J. and C. Webster, Working with linear logic in coq, in: 12th International Conference on
Theorem Proving in Higher Order Logics, 1999, pp. 1-16.

[17] Simmons, R. J., Structural focalization, ACM Transactions on Computational Logic 15 (2014), pp. 21:1-
21:33.
URL http://doi.acm.org/10.1145/2629678

[18] Tews, H., Formalizing cut elimination of coalgebraic logics in coq, in: D. Galmiche and D. Larchey-
Wendling, editors, Automated Reasoning with Analytic Tableaux and Related Methods: 22nd International
Conference, TABLEAUX 2013, Nancy, France, September 16-19, 2013, Proceedings (2013), pp. 257-272.
URL http://dx.doi.org/10.1007/978-3-642-40537-2_22

[19] Urban, C. and B. Zhu, Reuvisiting cut-elimination: One difficult proof is really a proof, in: A. Voronkov,
editor, Rewriting Techniques and Applications: 19th International Conference, RTA 2008 Hagenberg,
Austria, July 15-17, 2008 Proceedings (2008), pp. 409-424.

URL http://dx.doi.org/10.1007/978-3-540-70590-1_28

16


http://jfr.unibo.it/article/download/4650/4137
http://www.sciencedirect.com/science/article/pii/0168007296000048
http://dx.doi.org/10.1007/978-3-642-16242-8_19
http://arxiv.org/abs/0911.2993
http://journals.cambridge.org/article_S1755020311000323
http://hal.archives-ouvertes.fr/tel-01094980
http://dx.doi.org/10.1007/3-540-59338-1_41
http://www.aiml.net/volumes/volume10/Marin-Strassburger.pdf
http://dl.acm.org/citation.cfm?id=788017.788741
http://dx.doi.org/10.1007/978-3-642-02716-1_22
http://doi.acm.org/10.1145/2629678
http://dx.doi.org/10.1007/978-3-642-40537-2_22
http://dx.doi.org/10.1007/978-3-540-70590-1_28

	Introduction
	Background: Relational Reasoning in Abella
	Encoding an Object Language
	Encoding Object Formulas
	Multisets
	One-Sided MALL
	The Exponential Case
	Two-Sided Calculi

	Related work
	Conclusion
	References

