
Unification of Multisets with Multiple

Labelled Multiset Variables ∗

Zan Naeem1 and Giselle Reis1

Carnegie Mellon University, Doha, Qatar
znaeem@andrew.cmu.edu, giselle@cmu.edu

Abstract

We look into the problem of unifying multisets containing (first-order) terms and mul-
tiple multiset variables. The variables are labelled, meaning that a unifier that places a
term in a multiset variable Mi is different from another that places a term in a multiset
variable Mj , for i 6= j. We describe a sound, complete, and terminating algorithm for
computing the set of all possible unifiers, and analyse its complexity. We also prove an
input pre-processing step that avoids the computation of less general unifiers.

1 Introduction

Multiset is an important data-structure that is used to specify various object systems. Our
motivation stems mostly from proof theory, where logical entailment is encoded as sequents
Γ ` ∆, where both Γ and ∆ are typically considered as multisets. When reasoning about such
objects, one might need to use an implementation of sets/multisets based on lists, since most
reasoning tools (i.e., logical frameworks, proof assistants, and logic programming languages)
do not have built-in support for these data structures [2, 3, 6, 7]. Adding this kind of support
requires, among other things, a unification algorithm.

Multiset unification was studied in [1, 4], where the authors propose solutions for the problem
of unifying multisets with at most one multiset variable. We extend those results for multisets
with multiple multiset variables. In our setting, each multiset variable is labelled, meaning that
assigning a term to either a multiset Mi or Mj , where i 6= j, should be considered different
solutions. We describe a terminating algorithm and analyse its complexity. Moreover, we prove
that a simple modification of our algorithm avoids the computation of less general unifiers.

The need for labelled multiset variables emerged when reasoning with multiplicative rules
in sequent calculi, such as:

Γ1 ` A Γ2, B ` C

Γ1,Γ2, A → B ` C
→l

To apply this rule to, e.g., the sequent Γ, D,A→ B ` C, where A, B, C, and D are formulas,
we need to unify its antecedent Γ, D,A→ B with Γ1,Γ2, A→ B. Assigning formula D to Γ1 or
Γ2 should be considered two different solutions, since they result in two different applications
of the rule.

1.1 Preliminaries

A multiset M with multiple labelled multiset variables is denoted by {|t1, ..., tn|M1, ...,Mk|}.
Each ti is a term ranging over a first-order language L = 〈Σ,V〉, where Σ is a set of constants

∗This publication was made possible by the support of Qatar Foundation through Carnegie Mellon University
in Qatar’s Seed Research program. The statements made herein are solely the responsibility of the authors.

Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

and function symbols, and V is a denumerable set of term variables. Each Mi is a multiset
variable ranging over a denumerable set VM of multiset variables. When n and k are not
relevant, we abbreviate t1, ..., tn as t and M1, ...,Mk as M . When k = 0, we write the multiset
as {|t1, ..., tn|}. Henceforth, we refer to multisets with multiple labelled multiset variables as
mmsets for brevity.

Definition 1 (Substitution). An mmset substitution σ is a finite mapping of term variables
to terms, and of multiset variables to mmsets. The application of a substitution σ to an mmset
{|t1, ..., tn|M1, ...,Mk|} is defined as:

{|t1, ..., tn|M1, ...,Mk|}σ = {|t1σ, ..., tnσ|}]M1σ] ...]Mkσ

where each tiσ is the usual first-order substitution and] is left-associative and defined as:

{|t1, ..., tn|M1, ...,Mk|}] {|s1, ..., sm|N1, ..., Nl|} = {|t1, ..., tn, s1, ..., sm|M1, ...,Mk, N1, ..., Nl|}

Definition 2 (Equality). Mmsets M = {|t1, ..., tn|M1, ...,Mk|} and N = {|s1, ..., sm|N1, ..., Nl|}
are considered equal modulo a constraint theory T , written M =T N iff: n = m and t1, ..., tn
is a permutation of s1, ..., sm; and T `M1 ∪ ... ∪Mk ≡ N1 ∪ ... ∪Nl.

2 Mmsets Unification

The mmset unification problem of mmsetsM1 andM2 consists of finding a substitution σ and
constraint theory Tσ such that M1σ =Tσ M2σ. The theory Tσ consists of an equality over
unions of multiset variables, and it is computed a posteriori for each unifier σ.

2.1 Algorithm

In what follows, we use σ to denote a single substitution, Σs to denote sets of substitutions, ×
for the Cartesian product of two sets (or lists), and \ for multiset difference. The pseudo code
for all algorithms are listed in Appendix A, and an implementation in SML can be found at
https://github.com/meta-logic/mmset-unif.

The main function for mmset unification is implemented by Algorithm 1. In the most
general case (lines 11 to 17), the unifiers of {|t|M |} and {|s|N |} are computed by choosing a
subset of terms (of the same size) from t and s to be unified, and distributing the rest among
the multiset variables M and N . The number of terms chosen to be unified can vary from 0
to the minimum length of t and s. Two other cases are considered separately for efficiency
purposes. The first one is when there are no multiset variables (line 1). Here a unification is
only possible if |t| = |s|. The second case is when one of the mmsets does not have multiset
variables (lines 4 and 7). If M is empty, then all terms in s must be unified with a term from
t. The remaining terms in t can be allocated in N .

Function unify c (Algorithm 2) chooses c terms from the multisets t and s to be unified, and
distributes the rest of the terms among the multiset variables. The function choose(F, c) returns
a set of tuples (Fc, Fr), where Fc is the multiset with the chosen c elements (thus |Fc| = c),
and Fr = F\Fc. Unifiers for the chosen terms are computed by unify terms and stored in
Σt. Substitutions for each context variable, containing the remaining terms, are computed by
unify distribute and stored in ΣM . The final set of unifiers consists of the composition σMσt for
each (σM , σt) ∈ ΣM×Σt. Note that, since the image of σM may contain terms, the composition
needs to be in this order.

2

https://github.com/meta-logic/mmset-unif

Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

Function unify terms (Algorithm 3) finds all unifiers of two multisets of terms (without
multiset variables) of equal length. This is done by testing all possible pairings of the two
multisets, obtained by pairing some order of the first multiset with all possible permutations of
the second one. For each pairing, the function unify lists computes the most general unifier.

Function unify distribute (Algorithm 4) computes unifiers for the mmsets {|t|M |} and {|s|N |}
considering that all t occurs in N and all s occurs in M . Let ΣN denote the substitutions
that distribute t into N , and ΣM the substitutions that distribute s into M . The resulting
substitutions are σM ∪ σN for each (σM , σN) ∈ ΣM × ΣN . A simple union can be used in the
case, as the image of σM is disjoint from the domain of σN (see below).

Function distribute (Algorithm 5) is used by unify distribute and that is where the afore-
mentioned ΣN and ΣM are computed. It computes substitutions for the multiset variables
N1, ..., Nl such that all terms t1, ..., tn occur in one of the multisets. This is done by calculating
all ordered l-partitions of the multiset {|t1, ..., tn|}. For example, the ordered 2-partitions of the
multiset {|a, b, c|} are:

[{|a, b, c|}, {||}] [{|a, b|}, {|c|}] [{|a|}, {|b, c|}] [{|a, c|}, {|b|}]
[{||}, {|a, b, c|}] [{|c|}, {|a, b|}] [{|b, c|}, {|a|}] [{|b|}, {|a, c|}]

Each computed substitution corresponds to an l-ordered partition. If there are no terms
(n = 0), then there is only the trivial partition of l empty multisets. In this case, the algorithm
returns a list with one substitution, which maps every multiset variable Ni to the mmset with
no terms. If there are no multiset variables (l = 0), then there are no partitions, and thus no
possible substitutions. The exceptional case is when there are no terms nor multiset variables
(l = n = 0). In this case, the solution is the set containing only the empty substitution ({}).

The last parameter of distribute indicates whether the multiset variables should contain
exactly the terms t1, ..., tn. If set to true, then there is no more space for other terms, and
Ni is mapped to an mmset with the appropriate terms and no multiset variables. Otherwise
it is mapped to an mmset with a set of terms and a fresh multiset variable. If there are no
terms to place in the multiset variable, it is mapped to itself (to avoid unecessary renamings).
This is needed to compute the constraint theory, after which such identity substitutions can be
eliminated.

Constraint theory For a unifier σ, the constraint theory Tσ is defined as:⋃
{M ′i |Mi 7→ {|ts|M ′i |} ∈ σ} ≡

⋃
{N ′i | Ni 7→ {|ts|N ′i |} ∈ σ}

Soundness and completeness of the algorithm are straightforward, since it exhaustively
checks all possibilities for unifying multisets.

Theorem 1. Soundness If unify(M,N) 7→ {σ1, ..., σn} then ∀σi.Mσi =Tσi Nσi

Theorem 2. Completeness If ∃σ.Mσ =Tσ Nσ then unify(M,N) 7→ {σ1, ..., σn} and ∃σi such
that σ = σiσ

′.

Note that the use of a substitution σ′ is needed even if the set of computed unifiers is not
the minimal one.

3

Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

2.2 Complexity

The most expensive part of the unification algorithm is the one between lines 11 and 17 in
Algorithm 1, so we concentrate our complexity analysis to that case. For each i from 0 to the
minimum number of terms, unify c is called. This function has two nested loops over the sets
Tc and Sc (Alg. 2, lines 4, 5), which contain all possible ways of choosing i elements from n and
m, respectively. Thus |Tc| =

(
n
i

)
and |Sc| =

(
m
i

)
. In the inner part of the loops, unify terms

is called, which finds all possible unifiers for two multisets of size i. Since all possible pairings
of elements must be tried, and for each order unify lists runs in i2, the function (Alg. 3) has
complexity i2i!. The function unify distribute (Alg. 4) computes all possible ways of partitioning
n− i elements into l parts, and m− i elements into k parts, and returns the Cartesian product
of these sets. Therefore, its complexity is ln−i km−i.

Putting those together, we get to the cost for the unification of mmsets {|t1, ..., tn|M1, ...,Mk|}
and {|s1, ..., sm|N1, ..., Nl|}:

min(n,m)∑
i=0

(
n

i

)(
m

i

)
i2 i! ln−i km−i

After some arithmetic manipulation, we can conclude that, on the worst case, unify runs
in O(n! m! ln km). For the special case where the multisets have only one multiset variable:
l = k = 1, and the unification algorithm runs in O(n! m!).

2.3 Removing Less General Unifiers

The algorithm described in Section 2.1 does not compute the set of minimal unifiers. For
example, given multiset {|a, a|M |} and {|a|N |}, unify computes three unifiers with constraint:
{N 7→ {|a|N ′|}}, whereM ≡ N ′, twice (once for each occurrence of a), and {M 7→ {|a|M ′|} ; N 7→
{|a, a|N ′|}}, where M ′ ≡ N ′. These are the same unifiers obtained by the non-deterministic
algorithm from [5].

In order to reduce the number of less general unifiers, we can remove every pair of equal
terms ti and sj from the mmsets (i.e., ti and sj unify with the empty substitution). The
rationale behind this is that, every other unifier that is obtained by unifying these terms with
something else, or placing them in a multiset variable, can be recovered from the set of unifiers
obtained when this pair is not in the mmset.

We start by showing that it is safe to eliminate pairs of equal terms from the problem of
unifying multisets without multiset variables.

Theorem 3. Let t and s be two multisets of terms such that ta ∈ t and sb ∈ s are equal, for
some a and b. Let Σall = unify terms(t, s), and Σ = unify terms(t\{|ta|}, s\{|sb|}). Then for every
σ ∈ Σall, there exists µ ∈ Σ s.t. σ = µσ′ for some substitution σ′.

The proof for this theorem can be found in Appendix B. The overall idea is as follows. σ
was obtained by some pairing of terms in t and s. We choose µ as the unifier that used a
pairing that is as close as possible as the one used for σ. Those pairings differ only for the
terms involving ta and sb. Suppose ta is paired with sx and sb is paired with ty. Using the
most general unifiers of ty and sx, we can conclude the existence of σ′ such that σ = µσ′.

Theorem 4. Let {|t|M |} and {|s|N |} be two mmsets such that ta ∈ t is equal to sb ∈ s for some
a and b. Moreover, let Σall = unify({|t|M |}, {|s|N |}), and Σ = unify({|t\{|ta|}|M |}, {|s\{|sb|}|N |}).
Then for every σ ∈ Σall there exists µ ∈ Σ such that σ = µσ′ for some σ′.

4

Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

The proof for this theorem can be found in Appendix B. We proceed by a case analysis on
whether ta and sb were chosen to be unified, or to be placed in a multiset variable. There are
four cases. The case in which both are chosen to be unified is solved using Theorem 3. For
the case in which both are placed in a multiset variable, we can construct σ′. The other two
(dual) cases are the more involved ones. They use a combination of the two strategies of the
first cases.

This modification is implemented in the algorithm available online, and extensive testing has
shown that all less general unifiers are eliminated. In particular, only the unifier {N 7→ {|a|N ′|}},
where M ≡ N ′ is computed for mmsets {|a, a|M |} and {|a|N |}.

3 Conclusion

We have developed a sound and complete algorithm for finding unifiers of multisets with multiple
multiset variables. The algorithm is deterministic and terminating. It is implemented in SML,
and we also provide the pseudo code for reproducibility. The same algorithm can be used for
the particular case where there is only one multiset variable.

The complexity of the unification procedure is analysed, and its cost is high. This is inherent
to the problem, since it is of combinatorial nature. It may be possible to improve this result
by using the right data-structures and heuristics, but for our purposes, since the numbers are
quite small, it runs fast enough.

We have also tried to eliminate all sources of redundancy, so that the set of computed
unifiers is as close as possible to the minimal one. In particular, we have shown that a simple
pre-processing of the input problem will produce fewer unifiers, and all those that are no longer
produced can be recovered. We conjecture that this optimization leads to the computation of
the minimal set of unifiers, but we leave this investigation as future work.

References

[1] I. Cervesato. Solution Count for Multiset Unification with Trailing Multiset Variables. In C. Ringeis-
sen, C. Tinelli, F. Trinen, and R. Verma, editors, Sixteenth International Workshop on Unification
— UNIF’02, pages 64–68, 2002.

[2] K. Chaudhuri, L. Lima, and G. Reis. Formalized Meta-Theory of Sequent Calculi for Substructural
Logics. Electronic Notes in Theoretical Computer Science, 332:57 – 73, 2017. LSFA 2016 - 11th
Workshop on Logical and Semantic Frameworks with Applications (LSFA).

[3] J. E. Dawson and R. Goré. Generic Methods for Formalising Sequent Calculi Applied to Prov-
ability Logic. In Logic for Programming, Artificial Intelligence, and Reasoning - 17th International
Conference, LPAR-17, 2010. Proceedings, pages 263–277, 2010.

[4] A. Dovier, A. Policriti, and G. Rossi. Integrating Lists, Multisets, and Sets in a Logic Program-
ming Framework. In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems: First
International Workshop, Munich, March 1996, pages 303–319. Springer Netherlands, 1996.

[5] A. Dovier, A. Policriti, and G. Rossi. A uniform axiomatic view of lists, multisets, and sets, and
the relevant unification algorithms. Fundam. Inf., 36(2-3):201–234, 1998.

[6] H. Tews. Formalizing Cut Elimination of Coalgebraic Logics in Coq. In Automated Reasoning
with Analytic Tableaux and Related Methods: 22nd International Conference, TABLEAUX 2013,
Proceedings, pages 257–272. Springer, 2013.

[7] B. Xavier, C. Olarte, G. Reis, and V. Nigam. Mechanizing Linear Logic in Coq. In Proceedings of
the 12th Workshop on Logical and Semantics Frameworks with Applications (LSFA), pages 60–77,
2017.

5

Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

A Algorithms

Algorithm 1 unify({|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
1: if k = 0 ∧ l = 0 then
2: if n = m then return unify terms([t1, ..., tn], [s1, ..., sm])
3: else return []
4: else if k = 0 then
5: if m ≤ n then return unify c(m, {|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
6: else return []
7: else if l = 0 then
8: if n ≤ m then return unify c(n, {|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
9: else return []

10: else
11: c← min(n,m)
12: Σ← []
13: for i = 0 to c do
14: Σ′ ← unify c(i, {|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
15: Σ← Σ ∪ Σ′

16: end for
17: return Σ
18: end if

Algorithm 2 unify c(c, {|t1, ..., tn|M1, ...,Mk|}, {|s1, ..., sm|N1, ..., Nl|})
1: Σ← []
2: Tc ← choose({|t1, ..., tn|}, c)
3: Sc ← choose({|s1, ..., sm|}, c)
4: for ({|t′1, ..., t′c|}, {|t′c+1, ..., t

′
n|}) ∈ Tc do

5: for ({|s′1, ..., s′c|}, {|s′c+1, ..., s
′
m|}) ∈ Sc do

6: Σt ← unify terms([t′1, ..., t
′
c], [s

′
1, ..., s

′
c])

7: if Σt 6= [] then
8: ΣM ← unify distribute(({|t′c+1, ..., t

′
n|}, {M1, ...,Mk}), ({|s′c+1, ..., s

′
m|}, {N1, ..., Nl}))

9: Σ′ ← map(λ(σt, σM).σMσt)(Σt × ΣM)
10: Σ← Σ ∪ Σ′

11: end if
12: end for
13: end for
14: return Σ
B Proofs

Proof for Theorem 3. We know that Σall contains at most n! unifiers, one for each way of
pairing elements of t with elements of s. Analogously, Σ contains at most (n− 1)! unifiers. Let:
Σall = {σ1, ..., σn!} and Σ = {µ1, ..., µ(n−1)!}. Then each σi can be obtained from some µj .

If σi is a unifier resulting from pairing ta with sb, then there exists µj = σi and we are done.
Let σi be a unifier resulting from pairing ta with some sx, sb with some ty, and some

permutation Pt of t\{|ta, ty|} with some permutation Ps of s\{|sb, sx|}. There exists a unifier
µj ∈ Σ that is the result of unifying the same permutations Pt and Ps, and ty with sx. We
show how σi can be reconstructed from µj . Since the order in which terms are unified does not
matter, we assume that σi and µj are obtained as follows:

6

Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

Algorithm 3 unify terms([t1, ..., tn], [s1, ..., sn])

1: Σ← []
2: Ps ← permutations([s1, ..., sn])
3: P ← [[t1, ..., tn]]× Ps
4: for (T, S) ∈ P do
5: σ ← unify lists(T, S)
6: if σ 6= None then Σ← {σ} ∪ Σ
7: end for

Algorithm 4 unify distribute(({|t1, ..., tn|}, {M1, ...,Mk}), ({|s1, ..., sm|}, {N1, ..., Nl}))
1: ΣN ← distribute({|t1, ..., tn|}, {N1, ..., Nl}, k = 0) {List of substitutions for Ni}
2: ΣM ← distribute({|s1, ..., sm|}, {M1, ...,Mk}, l = 0) {List of substitutions for Mi}
3: Σ← map(λ(σM , σN).σM ∪ σN)(ΣM × ΣN)
4: return Σ

Algorithm 5 distribute({|t1, ..., tn|}, {M1, ...,Mk}, exact)

1: if n = 0 ∧ k = 0 then
2: return [{}]
3: end if
4: Σ← []
5: Pt ← ordered partitions({|t1, ..., tn|}, k)
6: for p ∈ Pt do
7: σ ← {}
8: for i = 1 to k do
9: ts← p[i]

10: if exact then σ ← σ{Mi 7→ {|ts| · |}}
11: if ¬exact ∧ ts = ∅ then σ ← σ{Mi 7→ {| · |Mi|}}
12: if ¬exact ∧ ts 6= ∅ then σ ← σ{Mi 7→ {|ts|M ′i |}}
13: end for
14: Σ← {σ} ∪ Σ
15: end for
16: return Σ

1. Computation of σi:

(a) mgu σax of ta and sx
(b) mgu σby of tyσax and sbσax
(c) mgu σPi of Ptσaxσby and Ptσaxσby

2. Computation of µj :

(a) mgu σxy of ty and sx
(b) mgu σPj of Ptσxy and Psσxy

Therefore σi = σaxσbyσPi and µj = σxyσPj . We know that:

taσax = sxσax from 1a (1)

tyσaxσby = sbσaxσby from 1b (2)

tyσaxσby = taσaxσby because ta = sb (3)

tyσaxσby = sxσaxσby from 3 and 1 (4)

Thus, σaxσby is a unifier of ty and sx. But from 2a we have that σxy is the most general

7

Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

unifiers of these terms, which means that there exists a σ′ such that

σaxσby = σxyσ
′ (5)

From 5 and 1c, we know that Ptσxyσ
′σPi = Psσxyσ

′σPi , meaning that σ′σPi is a unifier of
Ptσxy and Psσxy. But from 2b, σPj is the most general unifier of these two lists, therefore,
there exists σ′′ such that

σ′σPi = σPjσ
′′ (6)

Using 5, 6, and associativity of substitution composition:

σi = σaxσbyσPi = σxyσPjσ
′′ = µjσ

′′

Proof for Theorem 4. We case on how ta and sb were used to compute σ. Let
−→
tc and −→sc denote

the terms and order chosen from t and s, respectively, to be unified. Let tr and sr denote the
rest of the terms in t and s that will be distributed to N and M , respectively.

We know that σ = σMσt (Alg. 2, line 9), where σt is the unifier of
−→
tc and −→sc , and σM is

obtained from partitions denoted as πt(tr) and πs(sr).

1. ta ∈
−→
tc and sb ∈ −→sc

Take µ = µMµt such that µM = σM is obtained from the same partitions πt(tr) and
πs(sr), and µt is such that σt = µtσ

′ for some σ′. The existence of such µt is guaranteed
by Theorem 3. Therefore, σ = σMσt = µMµtσ

′ = µσ′.

2. ta ∈ tr and sb ∈ sr
Let tpa , ta be the part from πt(tr) with ta, and spb , sb the part from πs(sr) with sb.

Take µ = µMµt such that µt = σt is the unifier of
−→
tc and −→sc , and µM is obtained from

partitions πt(tr) where tpa , ta is replaced by tpa and analogously for πs(sr). Thus the
mappings in σM and µM are the same, except for two multiset variables Na and Mb:

{Mb 7→ spb , sb,M
′
b ; Na 7→ tpa , ta, N

′
a} ⊂ σM

{Mb 7→ spb ,M
′
b ; Na 7→ tpa , N

′
a} ⊂ µM

Since M ′b and N ′a are fresh multiset variable names:

σM = µM{M ′b 7→ sb,M
′
b ; N ′a 7→ ta, N

′
a}

And since σt = µt:

σMσt = µM{M ′b 7→ sb,M
′
b ; N ′a 7→ ta, N

′
a}µt

The image of µt does not contain M ′b nor N ′a, therefore:

σMσt = µMµt{M ′b 7→ sb,M
′
b ; N ′a 7→ ta, N

′
a}µt

Thus:
σ = µ{M ′b 7→ sb,M

′
b ; N ′a 7→ ta, N

′
a}µt

8

Unification of Multisets with Multiple Labelled Multiset Variables Naeem and Reis

3. ta ∈
−→
tc and sb ∈ sr

Let sk be the term from −→sc that is paired with ta and spb , sb be the part from πs(sr)

containing sb. Assume that ta is unified with sk with mgu σak, and that (
−→
tc \{|ta|})σak

unifies with (−→sc\{|sk|})σak with mgu σc. Thus σt = σakσc. Let Mb be the variable to
which partition spb , sb is assigned. Thus:

{Mb 7→ spb , sb,M
′
b} ⊂ σM By definition (1)

{Mb 7→ spbσak, sbσak,M
′
b} ⊂ σMσak Composition with σak (2)

{Mb 7→ spbσak, taσak,M
′
b} ⊂ σMσak ta = sb (3)

{Mb 7→ spbσak, skσak,M
′
b} ⊂ σMσak taσak = skσak (4)

Take µ = µMµt such that the terms
−→
tc \{|ta|} and −→sc\{|sk|} are unified with mgu µt, and

µM is computed using partition πt(tr) and πs(sr) where part spb , sb is replaced by spb , sk.
Therefore,

{Mb 7→ spb , sk,M
′
b} ⊂ µM (5)

Because µt is the mgu of the two lists, we have that: σt = σakσc = µtσ
′
t for some

σ′t. And from 4 and 5 we can also conclude: σMσak = µMσak. Using these equalities:
σ = σMσt = σMσakσc = µMσakσc = µMµtσ

′
t = µσ′t.

4. ta ∈ tr and sb ∈ −→sc Analogous to the previous case.

9

	Introduction
	Preliminaries

	Mmsets Unification
	Algorithm
	Complexity
	Removing Less General Unifiers

	Conclusion
	Algorithms
	Proofs

