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Abstract

Oracles are crucial components that bring external data to smart contracts deployed
on blockchains. With the recent surge in popularity of decentralized finance (DeFi) ap-
plications, it is critical to provide assurances about the oracle implementations as these
applications deal with high-value transactions and a small price discrepancy can lead to
huge losses. Although there are many oracle implementations, there have not been many
efforts to formally verify their behavior. We present a simple oracle implementation in
Solidity and its formal model using the Coq interactive theorem prover. We also prove
interesting trace-level properties that give us formal guarantees about the oracle’s behavior
at a high level. Our work can be a stepping stone for future oracle implementations and
provide developers with a framework for formally verifying their implementations.

Smart contracts are programs that run on blockchains, maintain an internal state and pro-
vide functions whose execution may depend on the internal state and on calls to functions of
other smart contracts. Due to the decentralized operation of blockchains, applications built
through smart contracts may enjoy desirable qualities such as transparency, censorship resis-
tance and interoperability. The flexible programmability of smart contracts coupled with the
qualities of the blockchain environment formed a fertile ground for financial applications, where
such qualities are highly desirable and at times absent in the traditional financial sector [1].
This ushered an era of so-called Decentralized Finance (DeFi). Thousands of digital assets have
been implemented as ERC20 [2] smart contracts that maintain, as their internal states, the
balances of all users of an asset and provide functions for transferring amounts from one user
to another. Collateralized lending applications [3] have been developed to allow users to lend
and borrow such assets. Exchange applications [4] have been developed to allow users to swap
assets. And various stablecoin algorithms have been proposed to allow the price of a digital
asset to track the price of another asset.

Blockchain applications often need access to information that is not readily available on the
blockchain. For DeFi applications in particular, data from the external world can be crucial.
For example: a stablecoin needs to know the relative price of the fiat currency to which it is
pegged; a collateralized lending application needs to know the value of the collateral to know
when to liquidate debts. This need is satiated through a special type of blockchain application
known as oracle. An oracle has a smart contract that maintains the desired data in its internal
state and implements an oracle protocol that establishes the conditions under which various
entities may write or read data from the contract. Some of these entities are also responsible
for operating off-chain components of the oracle to obtain the data to be written to the contract.

Oracle protocols differ widely in how frequently the data is updated, how data consumers
are charged for reading the data, how data being written by multiple sources is aggregated,
how misbehaviour is penalized and desirable behaviour incentivized.

Unfortunately, existing oracle implementations are ad hoc, lacking a formal definition, or
even a precise description, of their protocol. Without a formal definition, it is harder to provide
guarantees for the oracle’s functioning. In the worst case, there might even be unidentified
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exploitable security vulnerabilities. This leads to uncertainty and compromises confidence on
the applications that depend on such oracle implementations.

Our work tackles this issue by: (1) proposing a (non-exhaustive) set of desirable properties
for oracle protocols; (2) formalizing a simple oracle protocol in Coq and formally proving that it
satisfies these desirable properties; (3) implementing an oracle smart contract in Solidity closely
following the formal oracle protocol.

Our work focuses on the long-term economic sustainability of the oracle. Since an oracle has
off-chain components that are costly to operate (e.g. to obtain data from an external source
and write it to the contract), the entities operating these components need to be economically
incentivized to keep doing their work. This is done by charging fees from the data consumers
who read data from the oracle. The oracle protocol automatically adjusts the fees for reading
data based on the costs of the data provider and the frequency of data reads, aiming to ensure
that: (A) the costs of the data provider are covered by the fee revenue from data reads; and (B)
every data consumer is paying a price that is fair in the sense that they never have to pay twice
for the same data point and the cost of data is distributed evenly between all data consumers.

Given the desired properties (A) and (B), we developed an oracle smart contract in Coq
in parallel with its Solidity implementation assuming a single external data provider. The
Coq formalization was designed such that properties could be proved fairly easily, but also
that it faithfully represents the Solidity implementation. Striking this balance is not always
straightforward. We went over a few different representations before establishing what follows.

Since Solidity is an object-oriented language, the formalization uses Coq’s Records to repre-
sent objects. The oracle contract itself is an object, which is implemented in Coq as a Record
called State. This record consists of two sub-records: OracleState and OracleParameters; and a
Trace list. OracleState contains contract attributes that change with time and OracleParameters
encompasses immutable attributes set at initialization. Trace is a list of Events that keeps a
record of the operations performed on the contract. Every time a contract function is called, its
corresponding Event is added to the Trace. Finally, in order to account for side effects, contract
functions implemented in Coq have explicit States in their input and output.

Our oracle protocol uses a subscription-based model where consumers deposit credit before
reading the data. The cost of a data read is taken from a consumer’s balance and it depends,
among other things, on a base fee, which can be adjusted but may not exceed a maximum fee.
These fees are part of the contract’s parameters and can be adjusted by the data provider.
Proper adjustments can, under certain assumptions, provably ensure that properties (A) and
(B) are fulfilled.

Using the oracle formalization in Coq, we could prove two main theorems:
Thm 1. For all consumers c, if credit(c) ≥ 0, then after any contract function call credit(c) ≥ 0.
Thm 2. Between two consecutive data writes, each consumer pays once to read the data.

Both properties are proved using induction on the Trace. The proof of Theorem 1 uses
two helper lemmas. The proof of Theorem 2 uses nine helper lemmas. Both proofs also use a
number of auxiliary definitions for manipulating states and traces.

The implementation and formalization can be found at, respectively, https://github.com/
DjedAlliance/Oracle-Solidity/tree/cmu-qatar and https://github.com/DjedAlliance/
Oracle-FormalMethods.

For future work, our next step is to shift our focus from economic aspects to governance
aspects around the whitelist of data providers, who can adjust the oracle’s parameters and vote
to add or remove data providers from the whitelist. We plan to prove theorems related to the
security of such governance processes under circumstances where some data providers may have
been compromised.

https://github.com/DjedAlliance/Oracle-Solidity/tree/cmu-qatar
https://github.com/DjedAlliance/Oracle-Solidity/tree/cmu-qatar
https://github.com/DjedAlliance/Oracle-FormalMethods
https://github.com/DjedAlliance/Oracle-FormalMethods
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