
Under consideration for publication in Theory and Practice of Logic Programming 1

Checking Proof Transformations with ASP

VIVEK NIGAM and LEONARDO LIMA
Universidade Federal da Paraı́ba, Brazil

(e-mail: {vivek.nigam, leonardo.alfs}@gmail.com)

GISELLE REIS
Vienna University of Technology, Austria

(e-mail: giselle@logic.at)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Proof transformation is an important proof theoretic technique that has been used for showing a number of
foundational results about proof systems. For instance, it is used for showing the admissibility of the cut-
rule and the completeness of proof search strategies, such as uniform provability and the focusing discipline.
However, in order to check the validity of a proof transformation, such as when one inference rule permutes
over another, one needs to consider the combination of how inference rules may be applied. Therefore,
checking the correctness of proof transformations is prone to human error. This paper offers the means to
automatize the check of such transformations by using Answer Set Programming (ASP).

KEYWORDS: Answer Set Programming, Automatic Verification, Logical Frameworks, Proof Theory

1 Introduction

Proof transformation is a powerful technique used in proving many foundational results about
proof systems. For instance, one demonstrates the admissibility of the cut-rule (Gen69) by show-
ing how to transform a proof with cuts into a proof without cuts. Similarly, in order to show the
completeness of a proof search strategy, such as uniform provability (MNPS91) and the focusing
discipline (And92), one demonstrates how to transform an arbitrary (cut-free) proof into another
(cut-free) proof that follows the given proof search strategy.

However, it is often a tedious task to verify whether a proof transformation is valid, specially
when there is a great number of cases to consider. For example, in the proof of completeness
of the focusing discipline and of the admissibility of the cut rule, one needs to show that some
rules permute over other rules (MS07; Gen69). These results are called permutation lemmas and
they are obtained by showing that any proof where two rules are applied in a determined order
can be transformed into another proof where these rules are permuted. For example: a linear
logic (Gir87) proof ending with the derivation to the left, where ⊗R is applied last, can (always)
be transformed into another linear logic proof ending with the derivation to the right, where the
NR is applied last:

Ξ1
Γ ` ∆, A

Ξ2
Γ′ ` ∆′, B,C

Ξ3
Γ′ ` ∆′, B,D

Γ′ ` ∆′, B,CND
[NR]

Γ,Γ′ ` ∆,∆′, A ⊗ B,CND
[⊗R]

Ξ1
Γ ` ∆, A

Ξ2
Γ′ ` ∆′, B,C

Γ,Γ′ ` ∆,∆′, A ⊗ B,C
[⊗R]

Ξ1
Γ ` ∆, A

Ξ3
Γ′ ` ∆′, B,D

Γ,Γ′ ` ∆,∆′, A ⊗ B,D
[⊗R]

Γ,Γ′ ` ∆,∆′, A ⊗ B,CND
[NR]

The proof transformation above is one of the many cases required in showing that any instance

2 V. Nigam, G. Reis and L. Lima

of a ⊗R rule can permute over any instance of a NR. In general, checking the correctness of such
transformations involves checking that: (Obligation 1) all rules are correctly applied; and that
(Obligation 2) the premises of the latter derivation can be proved using the proofs introducing
the premises of the former derivation. For instance, in the case above, the proof Ξ1 introducing
the sequent Γ ` ∆, A in the former derivation can be used twice in the latter derivation. Similar
permutation lemmas also appear in the proof of cut-elimination, in particular, when transforming
a proof with cuts into a proof with principal cuts (Gen69).1

Although one can check by hand the validity of such proof transformations, this procedure is
prone to human error as they have a combinatorial nature and therefore one can easily miss a
case or another. For instance, the cut-elimination result for Bi-Intuitionistic logic (Rau74) given
by Rauszer was later found to be incorrect (Cro01) exactly because one of the permutation lem-
mas was in fact not true. A much better approach, therefore, is to automate the check of proof
transformations.

As we demonstrate in this paper, Answer Set Programming (ASP) (GL90) can be easily used
for checking the correctness of wide range of proof transformations. In our initial efforts, we
tried to use functional programming to simulate all cases and check whether the Proof Obliga-
tions 1 and 2 are satisfied. However, as illustrated above, these problems require a combinatorial
solution, for which our solution using ASP turned out to be a much simpler. In particular, we
construct two Answer Set Programs (henceforth referred to as LP):
• The first program, T , is constructed for a given inference rule, r, and specifies the set of its
valid instances. We show that T is sound and complete in the sense that its set of answer-sets
corresponds exactly to the set of all possible valid instances of the rule r, solving Obligation 1.

• For two given sequents, S1 and S2, the second program, P, checks whether the sequent S2 is
provable, when assuming that S1 is also provable. In particular, we show that if the program P
has at least one answer-set, then it is possible to derive a proof of S2 from a proof of S1. This is
enough to solve Obligation 2. As this problem is undecidable in general, we show the soundness
of this program.

Another main advantage of using ASP is that it enables the use of powerful off-the-shelf
provers (NS97; LPF+06). We implemented a tool that takes the specification of a proof system
and checks automatically which inference rules of the object-system permute over another rule.
Whenever the tool can find a valid permutation it outputs the corresponding proof transforma-
tion, and whenever it cannot show that a rule permutes over another, it can output the cases that it
failed to find a valid permutation. We used this tool to show a number of proof transformations.
For instance, our tool checks all cases of the key permutation lemmas needed for showing the
completeness of the focusing discipline (And92) and uniform proofs (MNPS91). Up to the best
of our knowledge there is no such tool yet available.

After reviewing in Section 2 the proof theoretic and logic programming machinery needed in
this paper, we propose in Section 3 an answer set program that specifies the derivations that are
available from the proof system, proving the correctness and completeness of the specification.
Section 4 contains the answer set program that checks whether a derivation is provable assuming
the provability of another derivation. We also show that this check is sound. Section 5 elaborates
on how these two programs can be used to check whether a rule permutes over another and

1 In fact, permutation lemmas compose a great part of the cut-elimination proof, roughly half of the proof. See for
example the proof in http://twelf.org/wiki/Admissibility_of_cut.

International Conference on Logic Programming 3

discusses our implementation and experimental results. Finally in Section 6, we discuss our tool
and experimental results and conclude by pointing out related and future work.

2 Preliminaries

2.1 Sequents with Contexts and Inference Rules

We assume that reader is familiar with the basic terminology of proof theory, and introduce the
terminology which will be used to guide our work. In general, a sequent with contexts (And92) is
a slight generalization used in the context of logic programming and logical frameworks (NM10;
CP02) of the usual sequents in sequent calculus (Gen69). They are of the form

Γ1 | Γ2 | · · · | Γn ` Γn+1 | Γn+2 | · · · | Γn+m

containing n + m sequent contexts. For example, in intuitionisitic logic (LJ (Gen69)) sequents are
of the form Γ ` A with 2 contexts, one context to the left of the turnstyle and another to the right.

An inference rule is composed by one conclusion sequent and zero or more premises. These are
normally written using context variables, e.g., Γ,∆,Θ, which may be instantiated with collections
of formulas, and formula variables, e.g., A ∧ B, �A, whose schema variables, A and B, can be
instantiated with any formula. For instance, the inference rules for ∧R of intuitionistic logic and
�r of the modal logic S4 are shown below:

Γ ` A Γ ` B
Γ ` A ∧ B

[∧R]
�Γ ` A, �∆

�Γ,Γ′ ` �A, �∆,∆′
[�r]

The �r rule contains one premise, namely the sequent �Γ ` A, �∆, and a conclusion sequent
�Γ,Γ′ ` �A, �∆,∆′. It introduces the principal formula �A; A is an active formula. Any instance
of the context variables Γ,Γ′,∆,∆′ and the formula schema A in the rule above will correspond
to a valid instance of this rule. Similarly for the ∧R rule. In the case of the S4 system, we con-
sider each sequent having four contexts: boxed formulas on the left, other formulas on the left,
diamond formulas on the right and other formulas on the right. Whereas for intuitionistic logic
sequents, only two contexts are needed: left and right.

A sequent calculus proof systemP for a logic L is a set of inference rules such that the formulas
derived by the application of these rules are exactly the formulas valid in L. We say that a sequent
S is provable or derivable in P if there exists a derivation of S using the inference rules of P
such that all leaves are closed, i.e., their topmost rule has no premises. A leaf (or premise) is said
to be open if it is not closed.

Following the terminology normally used in the logical framework literature (NM10; CP02),
we classify sequent contexts in two ways: bounded and unbounded. Context variables appearing
in a bounded context are instantiated by a multiset of formulas, which cannot be contracted
nor weakened. Thus, when a multiple premise rule is applied, these formulas are split among the
premises. This is the case for the contexts in rule⊗R of linear logic. Context variables appearing in
an unbounded context are instantiated by sets of formulas, which can be contracted or weakened
as much as needed. Consequently, they are copied among the premises of a rule, which is the
case for Γ of LJ’s ∧R rule.

In order to distinguish different occurrences of a formula, we associate to each formula oc-
currence A a number. That is, two different occurrences of the same formula A are represented
by (A, i), (A, j), where i , j. For simplicity, we assume implicitly that different occurrences of a
formula are distinguished this way.

4 V. Nigam, G. Reis and L. Lima

We assume that the shape of sequents, i.e., the number of contexts a sequent has and their
classification as bounded and unbounded are given as part of the input. This classification will
guide the specification of the Answer Set Programs we use to check more proof transformations
(Section 4). For example, if a context is unbounded, then the following lemma is provable:

Lemma 1
Let P be a proof system, whose sequents are of the form S = Γ1 | Γ2 | · · · | Γi | · · · | Γn ` ∆1 |

∆2 | · · · | ∆m, where Γi is an unbounded context. Let Γ′i ⊇ Γi be a superset of Γi for every i. If
the sequent S is provable in P, then the sequent S′ obtained from S by replacing Γi by Γ′i is also
provable in P.

The proof is straightforward, as one simply needs to weaken the formulas in Γ′i \ Γi in S′ and
recover the sequent S, which is assumed to be provable in P. Such lemmas enhance the checking
of proof transformation, in particular for checking Obligation 2, detailed above.

Finally, we notice that there are proof systems that have other types of contexts, such as
contexts that behave as lists of formulas, that is, that the exchange rule is not always applica-
ble (PS09). There are not many of these types of proof systems. We believe, however, that our
machinery for checking proof transformations can be extended for them, but this is left out of the
scope of this paper.

2.2 Answer Set Programming

Although we assume that the reader is familiar with Answer Set Programming (GL90), we review
some of its basic definitions. Let K be a set of propositional variables. A default literal is an
atomic formula preceded by not. A rule r is an ordered pair Head(r) ← Body(r), Head(r) is a
literal and Body(r) is a finite set of literals. A rule with Head = L and Body(r) = {L1, . . . , Ln} is
written L← L1, . . . , Ln. An interpretation M ofK is a subset ofK . An atomic formula, A, is true
in M, written M � A, if A ∈ M, otherwise false. A literal not A is true in M, written M � not A,
if A < M, otherwise false. An Answer Set Program (LP) is a set of rules. An interpretation M is
an answer set of a LP P if M′ = least(P ∪ {not A | A < M}), where M′ = M ∪ {not A | A < M}
and least is the least model of the definite logic program obtained from the argument program by
replacing all occurrences of not A by a new atomic formula not A. In the remainder of this paper,
we will not explicitly write the setK , but assume that it consists exactly of the symbols appearing
explicitly in the programs. Moreover, as usual, we consider variables appearing in programs as a
shorthand for the set of all its possible ground instantiations.

The interpretation of the default negation not assumes a closed-world assumption of programs.
That is, we assume to be true only the facts that are explicitly supported by a rule. For example,
the following program with three rules

a← not b b← not a c← a

has two answer-sets {a, c} and {b}. Finally, one can also specify a constraint in ASP by using
a rule whose head is the falsity, denoted by the symbol ⊥. For example, the rule specifies the
constraint that b cannot be true:

⊥ ← b

Thus, the program resulting from adding this rule to the program above has a single answer-set,
namely {a, c}.

International Conference on Logic Programming 5

Table 1. List of atomic formulas used together with their denotations and their logical axiomatization
T . Following usual logic programming conventions, all non-predicate term symbols are assumed to be
universally quantified, and we use commas, “,”, for conjunctions and “←” for the reverse implication.

Alphabet Denotation Logic Specification

in(F,Γ) F ∈ Γ No theory.

unitctx(F,Γ) Γ = {F} (r1) in(F,Γ)← unitctx(F,Γ).
(r2) ⊥ ← in(F1,Γ),unitctx(F,Γ), F1 , F.

emp(Γ) Γ = ∅ (r3) ⊥ ← in(F,Γ), emp(Γ).

union(Γ1,Γ2,Γ) Γ = Γ1 ∪ Γ2 (r4) in(F,Γ)← in(F,Γ1),union(Γ1,Γ2,Γ).
(r5) in(F,Γ)← in(F,Γ2),union(Γ1,Γ2,Γ).
(r6) emp(Γ)← emp(Γ1), emp(Γ2),union(Γ1,Γ2,Γ).
(r7) in(F,Γ1)← not in(F,Γ2), in(F,Γ),union(Γ1,Γ2,Γ).
(r8) in(F,Γ2)← not in(F,Γ1), in(F,Γ),union(Γ1,Γ2,Γ).

3 Checking the Validity of Derivations

Assume given a proof system, with inference rules detailed as before. For each rule in the proof
system, we can construct a LP that specifies all its possible instances. The idea is that for each
inference rule in the proof system, we associate an inference skeleton and a set of atomic facts.
The skeleton specifies the tree structure of the inference rule, while the set of facts specifies how
the formulas are moved along a derivation. From these, we can construct larger derivations as
usual.

The alphabet and the theory used to specify these derivations are shown in Table 1. The logic
program that we need is very simple, with only eight rules: (r1), (r2), . . . , (r8). These rules and
the predicates in Table 1 specify in a declarative fashion the content of context variables, Γ, in a
derivation. The encoding is all based on atomic formulas of the form in(F,Γ), which specify that
the formula F is in the context Γ.

The atomic formula unitctx(F,Γ) specifies that the context Γ has a single formula F. The first
rule (r1) specifies that in(F,Γ), while the second rule (r2) is a constraint rule specifying that there
is no other formula F′ different from F in the context Γ.

In some situations, for instance, when specifying the linear logic initial rule (Gir87), we need
to specify that some contexts are empty, which is done by using the atomic formula emp(Γ).
Rule (r3) is a constraint that specifies that no formula can be in an empty context.

The most elaborate specification are the rules (r4) – (r8), which specify the atomic formula
union(Γ1,Γ2,Γ), i.e. Γ = Γ1 ∪ Γ2. The rules (r4) and (r5) specify that Γ1 ⊆ Γ and Γ2 ⊆ Γ, that is,
the occurrence2 of a formula that is in Γi is also in Γ. The rule (r6) specifies that if both Γ1 and
Γ2 are empty then so is Γ. The rules (r7) and (r8) specify that these contexts are bounded (see
Section 2.1), that is, the union Γ = Γ1 ∪ Γ2 is a multiset union. An occurrence of a formula in Γ

either comes from Γ1 or from Γ2. Notice how we use the default negation to generate accordingly
the splitting behaviour of bounded contexts.

Auxiliary Context Variables and Macros From these rules, we can specify some more elaborate
conditions on context variables and formula variables. For this we may need fresh auxiliary

2 Recall that as discussed in Section 2, we keep track of the occurrences of formulas.

6 V. Nigam, G. Reis and L. Lima

context variables, written Γ
j
aux with an aux subscript. Freshness is guaranteed, as usual, by using

a counter that is incremented whenever one needs a new auxiliary context.
For example, the theory below, written Unions(Γ, [Γ1, . . . ,Γn]), specifies that Γ = Γ1∪· · ·∪Γn

by using auxiliary context variables as follows:

union(Γ1,Γ2,Γ
1
aux),union(Γ1

aux,Γ3,Γ
2
aux), . . . ,union(Γn−3

aux ,Γn−1,Γ
n−2
aux),union(Γn−2

aux ,Γn,Γ)

It is easy to check from the specification of union(·, ·, ·) that indeed whenever in(F,Γi) is true in
an answer-set then so is in(F,Γ), and conversely that if in(F,Γ) is true in an answer-set then there
is one 1 ≤ i ≤ n such that in(F,Γi) is also true.

Similarly, we can define when a context variable Γ = {A1, . . . , An}, is a collection of formulas.
This is specified by the theory below, written Equal(Γ, {A1, . . . , An}):

unitctx(A1,Γ
1
aux),unitctx(A2,Γ

2
aux), . . . ,unitctx(An,Γ

n
aux),Unions(Γ, [Γ1

aux, . . . ,Γ
n
aux])

While unitctx(Ai,Γ
i
aux) specifies that the auxiliary context variable contains only the formula

Ai, the specification Unions(Γ, [Γ1
aux, . . . ,Γ

n
aux]) specifies that Γ = Γ1

aux ∪ · · · Γ
n
aux. Notice that the

auxiliary variables are fresh, so the auxiliary variables needed in Unions(Γ, [Γ1
aux, . . . ,Γ

n
aux]) are

different from those in {Γ1
aux, . . . ,Γ

n
aux}.

Finally, another specification that we will need is when two context variables have the same
formulas, that is, Γ = Γ′. This is specified by the theory EqualCtx(Γ,Γ′), specified below:

emp(Γaux),union(Γ,Γaux,Γ
′)

The atom emp(Γaux) specifies that Γaux = ∅, while union(Γ,Γaux,Γ
′) specifies that Γ = Γaux ∪ Γ′.

We are aware that these operations might not cover all possible context transformations of
sequent calculus rules, but, as we discuss in more details in Section 5, we use a linear logical
framework for specifying proof systems (NPR11). In this language, the theory in Table 1 contains
the necessary constructs to check the proof transformations proposed.

Derivation Skeletons Derivation skeletons are defined inductively by using introduction rules of
a given proof system. Assume that the sequent contexts of this proof system are of the form

Γ1 | · · · | Γn ` Γn+1 | · · · | Γn+m

that is, with n + m contexts.
In Definition 2, ctxR(i, p) denotes the ith context of premise p, if p , 0 or of the conclusion if

p = 0.

Definition 2 (Inference skeleton)
Let R be an inference rule in the proof system. The inference skeleton for R is a pair 〈Ξ,B〉,
where Ξ is the inference rule with conclusion Γ0,1 | · · · | Γ0,n ` Γ0,n+1 | · · · | Γ0,n+m, and k premises
Γ j,1 | · · · | Γ j,n ` Γ j,(n+1) | · · · | Γ j,(n+m), with 1 ≤ j ≤ k, where all context variables have different
names, i.e., Γi,k = Γ j,l only if i = j and k = l. B is a set of formulas constructed by checking how
the contexts 1 to n + m are represented in the conclusion and premises of R. B is the smallest set
such that
• (No Context nor Formula) If ctxR(i, p) has no context nor formula variable, then emp(Γi,p) ∈ B;
• (Single Context) If ctxR(i, p) is a single context variable Γ, then EqualCtx(Γi,p,Γ) ⊆ B;
• (Single Formula) If ctxR(i, p) is of the form A, then unitctx(A,Γi,p) ∈ B;
• (More than one Context and/or Formula) If ctxR(i, p) is of the form Γ1, . . . ,Γn, A1, . . . , Am, then
Equal(Γaux, {A1, . . . , Am}),Unions(Γi,p, [Γ1, . . . ,Γn,Γaux]) ⊆ B.

International Conference on Logic Programming 7

where the auxiliary context variable Γaux is a fresh context name.

Example: Consider the ⊗R rule shown to the left. The inference skeleton for it is the pair 〈Ξ⊗,B⊗〉
obtained as described in Definition 2, where Ξ⊗ is the derivation shown to the right:

Γ ` ∆, A Γ′ ` ∆′, B
Γ,Γ′ ` ∆,∆′, A ⊗ B

[⊗R]
Γ1,1 ` Γ1,2 Γ2,1 ` Γ2,2

Γ0,1 ` Γ0,2

And B⊗ is the set:

B⊗ =


Equal(Γ1

aux, {A ⊗ B}),Unions(Γ0,2, [∆,∆′,Γ1
aux])

Equal(Γ2
aux, {A}),Unions(Γ1,2, [∆,Γ2

aux])
Equal(Γ3

aux, {B}),Unions(Γ2,2, [∆,Γ3
aux])

Unions(Γ0,1, [Γ,Γ′]),EqualCtx(Γ1,1,Γ),EqualCtx(Γ2,1,Γ
′)


It is easy to check that the LP B⊗ ∪ T has a single answer set, containing the formulas in(A ⊗
B,Γ0,2), in(A,Γ1,2) and in(B,Γ2,2).

Now, consider the following case, where we know that Γ,Γ′ has the formula C, but we do not
specify to which premise it was moved. This can be specified by adding the formula in(C,Γ0,1)
to the set B⊗. This addition will cause the resulting program to have two answer-sets. One where
in(C,Γ1,1), that is C is moved to the first premise, and another answer-set where in(C,Γ2,1), that
is, where C is moved to the second premise. Thus, we only need to build a generic derivation, Ξ,
and specify declaratively the contents of its contexts.

The following definition specifies the set of derivation skeletons, which are obtained by using
inference skeletons specified in Definition 2.

Definition 3 (Derivation skeleton)
The set of derivation skeletons is defined inductively. Every inference skeleton is a derivation
skeleton. Let D = 〈ΞD,BD〉 be a derivation skeleton with open premise P of the form Γp,1 | · · · |

Γp,n ` Γp,n+1 | · · · | Γp,m+n. Let I = 〈ΞI ,BI〉 be an inference skeleton, introducing a sequent of
the form ΓI,1 | · · · | ΓI,n ` ΓI,n+1 | · · · | ΓI,m+n, where we assume that all context variables in ΞI do
not appear in ΞD. Then 〈Ξ,B〉 is a derivation skeleton, where Ξ is obtained by replacing P by ΞI

and where B = BD ∪ BI ∪ BJoin, where BJoin is the set of formulas:

EqualCtx(Γp,1,ΓI,1), . . . ,EqualCtx(Γp,n+m,ΓI,n+m).

The interesting bit is the set B = BD ∪ BI ∪ BJoin specifying the contents of the contexts in
Ξ. In particular, it contains the same specification of BD and the specification of how formulas
are moved in the inference rule (BI). The set BJoin specifies that the premise P of ΞD and the
conclusion of ΞI are the same.

Example Continuing with the example above, consider the derivation skeleton obtained by ap-
plying another inference skeleton for the ⊗R rule, 〈Ξ′⊗,B

′
⊗〉 to the left-premise of the inference

skeleton built above. Assume that 〈Ξ′⊗,B
′
⊗〉 specifies the introduction of the formula C⊗D on the

right-hand-side and mentions the contexts names Γ j,1,Γ j,2 for 3 ≤ j ≤ 5. We obtain a derivation
skeleton 〈Ξ,B〉. Ξ is as follows:

Γ4,1 ` Γ4,2 Γ5,1 ` Γ5,2

Γ3,1 ` Γ3,2 Γ2,1 ` Γ2,2

Γ0,1 ` Γ0,2

Moreover, B = B⊗ ∪ B
′
⊗ ∪ BJoin. It is easy to check that the LP B ∪ T has two answer-sets.

One answer-set has in(A,Γ4,2), that is, the formula A is moved to the left-premise. The second

8 V. Nigam, G. Reis and L. Lima

answer set has in(A,Γ5,2), that is, the formula A is moved to the right-premise. In this way, we
can construct a single derivation skeleton, while the answer sets of the LP program associated to
it specifies the concrete instance derivations, if there are any.

Definition 4 (Derivation Instance)
Let 〈Ξ,B〉 be a derivation skeleton and P1 = B ∪ T . Let A be the answer set of P1. Then the
derivation 〈Ξ, a〉 obtained by using an answer-set a ∈ A is a derivation instance of 〈Ξ,B〉.

Theorem 5 (Soundness and Completeness)
Let A = {a1, . . . , an} be the answer set of the derivation skeleton 〈Ξ,B〉 obtained by applying
some inference skeletons for a given proof system P. Then 〈Ξ, ai〉 is a derivation instance iff it is
a derivation that can be obtained by applying the corresponding inference rules of P in the same
order and on the same premises.

4 Checking Provability Implication of Derivations

We now are interested in solving Obligation 2: given two derivation Ξ1 and Ξ2, are the premises
of Ξ2 provable given proofs of the premises of Ξ1? This amounts to check whether for every open
leaf S2 of Ξ2 there exists an open leaf S1 such that the provability of S1 implies the provability of
S2. So this problem can be reduced to what we call the Provability Implication problem, namely:
does the proof of a sequent S1 imply the proof of another sequent S2? Henceforth we denote this
problem by S1 ⇒ S2.

Notice that this problem is in general undecidable. Consider for instance the proof system LK
for first-order classical logic. The provability problem will amount to proving a first-order logic
(FOL) formula, namely to prove that the formula denoted by S1 implies the formula denoted by
S2. Since FOL provability is undecidable in general, the provability implication is also undecid-
able in general. Therefore, there is no hope for a method that is complete if we wish to make it
general enough to work for a broad set of logics.

However, many proof transformations, such as permutation lemmas, do not need very complex
arguments. Consider the following permutation:

Ξ
Γ, A, B ` ∆,C

Γ, A ∧ B ` ∆,C
[∧l] Ξ′

Γ′,C ` ∆′

Γ,Γ′, A ∧ B ` ∆,∆′
[cut]

Ξ
Γ, A, B ` ∆,C

Ξ′

Γ′,C ` ∆′

Γ,Γ′, A, B ` ∆,∆′
[cut]

Γ,Γ′, A ∧ B ` ∆,∆′
[∧l]

The premises of the derivation to the left (Ξ1) are the same as the premises of the derivation to
the right (Ξ2). Therefore, one can simply re-use the proofs Ξ and Ξ′. In fact, as we show in this
section, one can perform these checks in an automated fashion. This is again done by means of
ASP, and for that we add to the language the predicates in Table 2 and the rules in Table 3.

The predicate notProveIf (S2,S1) specifies the cases in which we cannot guarantee that S1 ⇒

S2. They are: (1) S1 contains a formula that is not in S2. If this formula is used in the proof of
S1, we cannot transform it into a proof of S2. This is specified by rule (c1). And (2) S2 contains a
formula in a bounded context (see Section 2.1) that is not in S1 This is specified by rule (c2). This
rule increases a bit the power of our method, by using Lemma 1: if the sequent S1 is provable
and if S2 is obtained by adding a formula to an unbounded context, then S2 is provable.

Note that these conditions are sufficient but not necessary. There might be cases that S1 ⇒ S2

holds, but our method cannot identify it. Thus it is sound, but not complete.
Given that there is a way to identify when it is not possible to guarantee whether S1 ⇒ S2,

International Conference on Logic Programming 9

Table 2. Predicates used to reason whether S1 ⇒ S2.
Predicate Meaning

inSequent(Γ,S) A context variable Γ is in a sequent called S.

inDer(S,D) The sequent S belongs to the derivation D, where D ∈ {Ξ1,Ξ2}.

bounded(Γ) Context Γ is bounded.

proveIf (S2,S1) S2 is derivable if S1 is derivable.

notProveIf (S2,S1) It is not possible to affirm that there is a derivation of S2 from a derivation of S1.

Table 3. Theory Td used to reason whether the open leaves of a derivation Ξ2 are provable given
the proofs of the open leaves of a derivation Ξ1. Here we consider that s1, . . . , sn are the open
leaves of Ξ2.

(c1) notProveIf (S2,S1)← in(F,Γ), inSequent(Γ,S1), inDer(S1,Ξ1),
not in(F,Γ′), inSequent(Γ′,S2), inDer(S2,Ξ2).

(c2) notProveIf (S2,S1)← in(F,Γ), inSequent(Γ,S2), inDer(S2,Ξ2),bounded(Γ),
not in(F,Γ′), inSequent(Γ′,S1), inDer(S1,Ξ1).

(c3) proveIf (S2,S1)← not notProveIf (S2,S1), inDer(S1,Ξ1), inDer(S2,Ξ2).

(c4) ok ← proveIf (s1,), . . . ,proveIf (sn,) .

(c5) ⊥ ← not ok.

we use “double negation” to specify when it is the case that S2 is actually provable (predicate
proveIf (S2,S1)). This is specified by rule (c3), which decides whether a sequent S2 from deriva-
tion Ξ2 is provable given that another sequent S1 from derivation Ξ1 is provable.

From rules (c1), (c2), and (c3), we can decide S1 ⇒ S2 for some cases. In order to prove
Obligation 2, we need to check if all the premises of Ξ2 are provable from proofs of the premises
of Ξ1. Since these premises are sequents themselves, we can use the proveIf (S2,S1) predicate
to reason about all the of them. In particular, we need to make sure that every premise of Ξ2 is
proved from some premise of Ξ1. This is specified by clause (c4).

Finally, we are interested only in whether there is a transformation or not, so we add the rule
(c5) to make sure that no models will be generated if some premise of Ξ2 does not follow from
any premise of Ξ1.

Let 〈Ξ1, a1〉 and 〈Ξ2, a2〉 be derivation instances. Furthermore, let Li be the set of predicates
inSequent(Γ,S), inDer(S,D) and bounded(Γ) that describes the open leaves of Ξi. We define
P2 = Td ∪ a1 ∪ a2 ∪ L1 ∪ L2. It is required in P2 that each derivation, sequent and context have
unique names.

Theorem 6 (Soundness)
Let D1 = 〈Ξ1, a2〉 and D2 = 〈Ξ2, a2〉 be derivation instances. If P2 returns a non-empty answer
set, then all open leaves ofD2 are provable given proofs of open leaves ofD1.

Proof sketch
The predicate notProveIf (S2,S1) is true if there is a possibility that a proof of S1 cannot be
transformed into a proof ofS2. If it is false, then we are sure that a proof ofS1 can be transformed
into a proof of S2 (either because these sequents have the same formulas in the same contexts, or

10 V. Nigam, G. Reis and L. Lima

because S2 has extra formulas that can be weakened). This is encoded by the clause (c3), which
also guarantees that S1 is from derivation Ξ1 and S2 is from derivation Ξ2. We can conclude that
if proveIf (S2,S1) is true, then it is certainly the case that a proof of S2 follows from a proof of
S1.

Given clauses (c4) and (c5), the program will only return a non-empty set if ok holds. Accord-
ing to clause (c4), ok will hold when proveIf (si,) is true for every open leaf si of Ξ2, which
means that proofs of si will follow from proofs of open leaves of Ξ1.

5 Putting all Together: Tool and Experimental Results

In Section 3, P1 was defined to obtain the possible derivations of a sequence of rule applications
of a proof system. In Section 4, P2 was presented to determine if a derivation instanceD2 follows
from another derivation instance D1. Using these two programs, it is possible to automate the
checking of a certain type of proof transformations. In this Section we define the problem of rule
permutation and how this is solved combining P1 and P2.

Definition 7 (Rule Permutation)
Let S be a sequent and α and β two inference rules of some proof system P. Let D1 be the set
of derivations obtained by applying α and then β (bottom up) to S, andD2 the set of derivations
obtained by applying β and then α. We say that α permutes over β if for all d1 ∈ D1, there exists
d2 ∈ D2 such that the provability of d1 implies the provability of d2.

The input of our algorithm to check permutations is: a proof system P (inference rules), the
format of a sequent in P (bounded and unbounded, left and right contexts), two inference rules
α and β and the description of an initial sequent, i.e., the principal formulas to which α and β are
applied and where these formulas are in the sequent (described by the predicate in(F,Γ)).

Using P1 and the initial constraints, one can generate the derivation instancesD1 from the ap-
plication of rules α/β. Similarly, the derivation instancesD2 are obtained from the application of
β/α. Since P1 is sound and complete, the sets inD1 andD2 correspond to all possible derivations
of α/β and β/α respectively.

To check if α permutes over β, we need to check that all d1 ∈ D1 have a corresponding d2 ∈ D2

such that the provability of d1 implies the provability of d2. This provability check is done by
P2. By executing the program a finite number of times, since the sets D1 and D2 are finite, one
can check the permutation condition. Since P2 is sound, it will only fail when indeed d2 is not
provable from d1.

Tool and Experimental Results In (MP13) it was shown how linear logic can be successfully
used as a framework for the specification of sequent calculi. Later, in (NPR11) it was shown how
linear logic with subexponentials can capture a wider range of proof systems with rules that have
more refined structural restrictions. Using the latter logic it is possible to specify the well known
sequent calculi LK and LJ, but also more involved calculi such as S4 and G3K (Neg05) for
modal logics and GK (AKZ13) for paraconsistent logics. This framework, and the specification
of several calculi, can be found at http://code.google.com/p/sellf. This is part of a bigger
project on reasoning about sequent calculus systems, and the advantage of using this framework
is that we can check proof transformations for different calculi that are available.

For this reason we chose to implement the methods of Sections 3 and 4 for the focused sequent
calculus for linear logic. This fact has also influenced the decision for choosing the alphabet in

International Conference on Logic Programming 11

Table 1. Using these methods, we implemented a function that checks permutation lemmas and
made it available for the users. Given the specification of a logic in this framework, the user can
choose two inference rules, say, α and β, and the system automatically checks if α permutes over
β. Some examples of specifications are already available in the system, but the user is free to
write their own.

Currently, the system outputs only whether the rules permute or not (the negative answer
corresponding to “don’t know”), but in principle it could also show the permutation cases. We
expect to add this functionality until before the conference.

We tested the implementation using the rules for linear logic and intuitionistic logic, in which
the permutation cases are well known and essential for the completeness of the proof search
disciplines focusing and uniform proofs, respectively. Our system identified correctly all the
permutation cases for LL: O/O, O/N, N/O, N/N, ⊗/⊗, ⊗/⊕, ⊕/⊗, ⊕/⊕, ⊕/O, ⊗/O, ⊕/N, ⊗/N;
and the all the permutations for LJ: ⊃l / ⊃r, ⊃l /∧r, ⊃l /∧l.

6 Related and Future Work

This paper contributes to automating the check of important proof theoretic properties. In par-
ticular, we showed how ASP is a suitable programming paradigm for checking proof transfor-
mations. We proposed two programs for doing so. The first checks the validity of a derivation
given where the formulas can possibly occur in a sequent. The second program is used to check
whether the proof of one sequent follows from the proof of another sequent. This is part of an
effort to build tools to help proof theorists to design proof systems.

The problem of checking the validity of proof transformations and in particular, for the proof of
permutation lemmas is as old as sequent calculus systems. Kleene in (Kle52) already investigated
this problem for LK and LJ. Some have also investigated more systematically how to determine
whether a permutation is valid. For instance, (GP94) and more recently (LH13) have proposed
some vocabulary based on the role of formulas in an instance of an inference rule. They were
able to prove when a permutation is possible by using this vocabulary. However, they do not
provide the means to automatize this check as one still needs to enumerate all possible instances
of rule applications to check whether all instances can permute. This paper gives a solution for
this problem by using ASP. We believe that the these two lines of work complement each other
and could be combined. But this is left as future work. In fact, up to the best of our knowledge,
this is the first result on automating the check of proof transformations.

There are several directions to follow from here. Currently, our system provides a yes/no an-
swer (and until the conference, it will also draw the transformations). It would be desirable to
output a machine checkable proof object. We are currently investigating how to output, in par-
ticular, a proof assistant code demonstrating some permutation, that could be checked by a proof
assistant, for example, Twelf (Sch00) or Abella (Gac09).

Since the completeness proof of the focusing strategy heavily relies on permutation lem-
mas (MS07), we are currently investigating whether one can automate the proposal of focused
proof systems which are complete to their un-focused version.

References

Arnon Avron, Beata Konikowska, and Anna Zamansky. Cut-free sequent calculi for c-systems with gener-
alized finite-valued semantics. J. Log. Comput., 23(3):517–540, 2013.

12 V. Nigam, G. Reis and L. Lima

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and Computation,
2(3):297–347, 1992.

Iliano Cervesato and Frank Pfenning. A Linear Logical Framework. Information & Computation,
179(1):19–75, November 2002.

Tristan Crolard. Subtractive logic. Theor. Comput. Sci., 254(1-2):151–185, 2001.
Andrew Gacek. The Abella system and homepage. http://abella.cs.umn.edu/, 2009.
Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, editor, The Collected Papers of

Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1969.
Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
Michael Gelfond and Vladimir Lifschitz. Logic programs with classical negation. In ICLP, pages 579–597,

1990.
Didier Galmiche and Guy Perrier. On proof normalization in linear logic. Theoretical Computer Science,

135:135–1, 1994.
Stephen Cole Kleene. Permutabilities of inferences in Gentzen’s calculi LK and LJ. Memoirs of the

American Mathematical Society, 10:1–26, 1952.
Tatjana Lutovac and James Harland. A contribution to automated-oriented reasoning about permutability

of sequent calculi rules. Submitted to Computer Science and Information Systems, 2013.
Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco

Scarcello. The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic,
7:499–562, July 2006.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation for
logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

Dale Miller and Elaine Pimentel. A formal framework for specifying sequent calculus proof systems. To
appear in TCS., 2013.

Dale Miller and Alexis Saurin. From proofs to focused proofs: a modular proof of focalization in linear
logic. In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, volume 4646 of
LNCS, pages 405–419. Springer, 2007.

Sara Negri. Proof analysis in modal logic. J. Philosophical Logic, 34(5-6):507–544, 2005.
Vivek Nigam and Dale Miller. A framework for proof systems. J. Autom. Reasoning, 45(2):157–188, 2010.
Vivek Nigam, Elaine Pimentel, and Giselle Reis. Specifying proof systems in linear logic with subexpo-

nentials. Electr. Notes Theor. Comput. Sci., 269:109–123, 2011.
Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the stable model and well-founded

semantics for normal lp. In LPNMR, pages 421–430, 1997.
Frank Pfenning and Robert J. Simmons. Substructural operational semantics as ordered logic programming.

In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14
August 2009, Los Angeles, CA, USA, pages 101–110. IEEE Computer Society, 2009.

C. Rauszer. A formalization of the propositional calculus h-b logic. Studia Logica, 33:23–34, 1974.
Carsten Schürmann. Automating the Meta Theory of Deductive Systems. PhD thesis, Carnegie Mellon

University, October 2000. CMU-CS-00-146.

