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Motivation. Python’s increasing popularity has led to its adoption from entry-level program-
mers to scientists and engineers [1, 3, 4]. Hence, a trustworthy Python execution machinery
should be critical and valuable. However, the language lacks a comprehensive formal definition
that could be used to provide provable guarantees and guide a verified implementation [7, 8].
Previous attempts to formalize Python’s source code have left out several features and core
parts. This is in part due to the sheer size, complexity, and constant evolution of the lan-
guage. But also, Python’s definition is written in natural language (e.g. English), which can
be imprecise, open to interpretation, and inconsistent with the actual implementation [7, 8].

Contribution. We propose that, since Python’s virtual machine executes bytecode, an alter-
native direction towards a verified Python implementation is to start from this lower, smaller
and more stable level. Therefore, we present, to our knowledge, the first formalization of
Python’s bytecode and virtual machine. This is, of course, not free of challenges, as Python’s
bytecode specification is also written in natural language. When descriptions were not clear,
we used cpython as Python’s reference implementation to fully understand the semantics. Our
formalization uses inference rules in the style of [5, 6] to define typing of objects and semantics,
which includes bytecode execution and frame stack management. The proposed rules are shown
to satisfy progress and preservation. In addition, our proposed framework can be extended with
built-in types without breaking safety guarantees. The formalized rules were implemented in
F⋆, where properties can be proved automatically via dependent types or lemmas solved by
an SMT solver. We call this implementation Py⋆ 1. From the F⋆ implementation, we ex-
tracted a Python bytecode interpreter in OCaml. This verified Python execution machinery
was compared to cpython for both consistency and performance.

Typing. Python is an object-oriented language in which all entities are objects of a certain
class. However, unlike other object-oriented languages, there is no static class (or type) checking.
Hence, one could say that all objects are of class Object statically, and their “real” class is only
discovered at runtime. In that sense, Python is statically unityped, which means that “type
checking” is now the responsibility of the execution machinery. Therefore, Python objects
must have enough typing information so that the virtual machine is able to check types at
runtime, and raise the appropriate errors when necessary. At the same time, this internal
typing information should not impact how programmers see and operate with the objects. We
achieve this by encapsulating the type information inside the top-level Object type.

Our typing system consists of 3 different layers valTyp, cls, and pyObj. At the innermost
level is valTyp, indicating whether the class implements a built-in type (e.g. int, string, list,
etc.) or is defined by the user (USERDEF). Below is a sample of the valTyp typing rules:

USERDEF : valTyp

i : int

INT(i) : valTyp

s : str

STRING(s) : valTyp

b : bool

BOOL(b) : valTyp

1The code for Py⋆ can be found here https://github.com/ammarkarkour/PyStar/

https://github.com/ammarkarkour/PyStar/
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A valTyp value is encapsulated in a cls record, which is the type of all objects in Python’s
source code. This record contains the name of the class, the process id of the object, a valTyp

value, and two mappings of fields and methods.
When it comes to execution, cpython uses the same type for both source code and virtual

machine objects. E.g., a bytecode instruction and an integer would both have type PyObject.
However, the distinction between these two kinds of objects is crucial for our formalization,
as it allows proving correctness of the virtual machine independently of the user’s code. This
distinction is made via the constructors of pyObj, which are: PYTYP(obj) for cls objects;
CODEOBJECT(co) for bytecode; FRAMEOBJECT(f) for frames (i.e. a program state); FUN(f) for
functions on built-in Python types (e.g. < or lt ); and ERR(s) for errors. Below is a sample
of pyObj typing rules (in the interest of space, we will not show the typing rule for frameObj):

obj : cls

PYTYP(obj) : pyObj

msg : str

ERR(msg) : pyObj

f : list pyObj → valTyp

FUN(f) : pyObj

f : frameObj

FRAMEOBJECT(f) : pyObj

Semantics. Python’s execution machinery works on a stack of frames. A frame is a tuple
⟨φ,Γ, i,∆⟩ where φ is a name context, Γ contains the bytecode Π, i is the program counter,
and ∆ is the data stack. The semantic rules formalize how frames f are evaluated and how the
frame stack K is managed. A frame stack in the evaluation state is written as K ▷ f , and in
the return state as K ◁ ret(v). Frame stack evaluation rules use the judgment K ◦f 7−→ K ′ ◦f ,
where ◦ ∈ {▷, ◁}. Frame evaluation rules use the judgment f

Γ.Π[i]7−−−−→f ′, where the arrow is labelled
with the bytecode operation being executed. An example of each kind of rule is shown below:

⟨φ,Γ, i,∆⟩ Γ.Π[i]7−−−−→ ⟨φn,Γn, in,∆n⟩
K ▷ ⟨φ,Γ, i,∆⟩ 7−→ K ▷ ⟨φn,Γn, in,∆n⟩ ⟨φ,Γ, i, v :: ∆⟩ Γ.Π[i]=POP TOP7−−−−−−−−−−→ ⟨φ,Γ, i+ 1,∆⟩

Safety Proving safety (or soundness) of our typing system entails proving that well-typed
terms do not reach a “stuck state”, which is a state where no formal semantics rule is applica-
ble [6]. This property is ensured by proving progress and preservation of our rules:

Thm 1 (Frame Stack Semantic Progress). A well-typed frame stack does not get stuck, that is,
it is either in a final state or it can take a step according to the frame stack semantic rules.

Thm 2 (Preservation). If an object o : τ evaluates to o′, then o′ : τ .

The proofs of the theorems follow the expected pattern. However, one must go through
them to have at least a sanity check that all cases are covered.

Implementation. F⋆ is a general-purpose functional programming language with effects
aimed at program verification [9]. One of the motivations for choosing F⋆ for our formal-
ization was because the tool was successfully used to verify assembly instructions, which is a
project close to ours [2]. Our verified implementation starts by embedding the defined types and
objects in F⋆. Following that, we enforce the semantics rules’ properties through the use of F⋆’s
dependent types and lemmas. For example, this is how the rule for POP TOP is implemented:

val pop_top: (l: list pyObj {Cons? l}) -> Tot (l2: list pyObj {l2 == tail l})

let pop_top datastack = List.Tot.Base.tail datastack

Following that, we use F⋆’s tools to extract a verified Python bytecode interpreter in OCaml,
which was tested against hand-crafted test cases and a subset of cpython’s test kit. We are
actively working on covering the whole of cpython’s test suite.
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