
Under consideration for publication in Math. Struct. in Comp. Science

Complexity of Translations from Resolution
to Sequent Calculus

Giselle Reis1† and Bruno Woltzenlogel Paleo2

1 Carnegie Mellon University, Doha, Qatar – giselle@cmu.edu
2 bruno.wp@gmail.com

Received 9 July 2019

Resolution and sequent calculus are two well-known formal proof systems. Their

differences make them suitable for distinct tasks. Resolution and its variants are very

efficient for automated reasoning and are in fact the theoretical basis of many theorem

provers. However, being intentionally machine-oriented, the resolution calculus is not as

natural for human beings and the input problem needs to be pre-processed to clause

normal form. Sequent calculus, on the other hand, is a modular formalism that is useful

for analyzing meta-properties of various logics and is, therefore, popular among

proof-theorists. The input problem does not need to be pre-processed, and proofs are

more detailed. However, proofs also tend to be larger and more verbose. When the

worlds of proof theory and automated theorem proving meet, translations between

resolution and sequent calculus are often necessary. In this paper we compare three

translation methods and analyze their complexity.

1. Introduction

The representation of proofs as structured mathematical objects is in the core of proof

theory. Nevertheless, it is unlikely that a single best representation will ever be developed.

Depending on what one needs proofs for, it makes sense to prefer one proof system over

another. Two widely used formalisms are the resolution calculus and the sequent calculus.

Variations, refinements and extensions of resolution are used in many contemporary

theorem provers (McCune 2005–2010, Schulz 2013, Bouton et al. 2009, Weidenbach et al.

2009, Korovin 2008, Benzmüller et al. 2015, Itegulov et al. 2017, Kovács & Voronkov

2013) due to their simplicity and efficiency in proof search. Simplicity is achieved by

requiring the input problem to be transformed to clause normal form (i.e. conjunction

of disjunctions of literals that are either atomic formulas or negated atomic formulas),

which allows the calculus to have only two inference rules (resolution and factoring).

Efficiency in proof search is achieved by restricting instantiation through unification and

† This paper was made possible by grant NPRP 7-988-1-178, from the Qatar National Research Fund

(a member of the Qatar Foundation). The statements made herein are solely the responsibility of the
authors.

G. Reis, B. Woltzenlogel Paleo 2

by using various refinements that restrict the application of the inference rules while

retaining completeness. As a result, proofs are relatively compact, but do not hold much

information. To begin with, a resolution refutation is a proof of the unsatisfiability of the

negation of the theorem. This means that the theorem is valid, but the refutation is not a

direct validity proof. Then, since the need for a clause normal form requires modification

of the conjecture in a number of ways (negations are pushed deeper, quantifiers are

prenexified and skolemized, and disjunctions are distributed over conjunctions – or new

symbols are introduced to avoid the exponential blow-up of the distribution), it might be

hard to map each resolution step into some insight about the original problem statement.

Sequent calculus was introduced by Gentzen (Gentzen 1969) as a meta-calculus to

reason about natural deduction derivations and it continues to be used by most proof

theorists for proof analysis and for meta-analysis of a logic’s properties. In principle,

the calculus is composed of two or more rules for each connective, which represent the

semantics of the connective when it appears in a goal or in a hypothesis (e.g. ∧ in a goal

means one needs to prove two subgoals, whereas ∧ in a hypothesis means one has two

subhypotheses available to use). The proximity to a semantic interpretation makes it con-

venient to show the calculus’ soundness and completeness. Proving the logic’s consistency

is also straightforward (usually as a corollary of cut elimination). Additionally, sequent

calculi have been used as proof systems for many different logics, as the formalism is

modular and easily adaptable. The existence of many rules for connectives in different

contexts makes it possible to work on a theorem without having to transform it. This

characteristic also enables a better mapping of human reasoning steps to the formal proof

steps. Consequently, much more information can be extracted from a sequent calculus

proof. It is not a coincidence that many proof assistants (where proofs are constructed

through scripts written by humans) are based on (higher-order) natural deduction and

their basic tactic commands resemble sequent calculus rules.

Occasionally, translations between the two systems are necessary. One situation where

this was the case was in studies of the compression of sequent calculus proofs via the

introduction of cuts, as in the methods proposed in (Woltzenlogel Paleo 2010) (atomic

cuts) and (Hetzl et al. 2014) (first order cuts). In the former, the cuts to be introduced

are obtained from a resolution refutation of a clause set extracted from the cut-free proof:

the sequent calculus proof with cuts is the result of combining the resolution refutation

with parts of the original cut-free proof. In the latter, the cut-introduction method was

validated and evaluated on a large database of sequent calculus proofs that were obtained

by translating resolution-based proofs (Reis 2015).

Secondly, translations from resolution to sequent calculus are necessary in some ap-

proaches to proof checking. As automated theorem provers are complex pieces of software

and therefore vulnerable to bugs, the output of proofs is a common solution to the issue

of lack of trust arising from this complexity. Proofs certify that the answer given by the

prover is correct, even if the prover itself might not be completely correct. If a user can

successfully and independently check the proof, the user can trust the prover’s answer

even without fully trusting the prover. The foundational proof certificate initiative (Miller

2013) adheres to this approach and proposes a conceptual framework to uniformly check

proofs in a variety of calculi and formats. Due to its versatility, a sequent calculus was

Complexity of Translations from Resolution to Sequent Calculus 3

chosen as the meta-calculus for this general proof-checking task and, in (Chihani et al.

2017) in particular, an embedding of resolution into LKF (focused sequent calculus for

classical logic) was defined. Focusing is used to obtain a fine-grained correspondence be-

tween the sequent calculus proof and the resolution proof, but focusing is not essential.

Leaving focusing aside, their embedding can be seen as a translation from resolution to

regular sequent calculus.

Yet a third situation in which a translation from resolution to sequent calculus proofs

may arise is when proving soundness and completeness of one system with respect to

the other. This is the goal in (Hermant 2010). Although there the translation is defined

between calculi with deduction modulo, this is not essential and can be left aside as well.

It should be noted that, given the theoretical context in which the third translation was

conceived, complexity was not as relevant a concern as it was for the first and second

translations. The third translation is nevertheless included in our analysis, because it can

be used to translate resolution refutations into cut-free sequent calculus proofs; a feature

the other two translations lack.

The translations proposed in the situations mentioned previously appeared as a side-

product of the main work, and thus not much attention has been paid to them. In

this paper, we redefine all translations in a common setting such that their differences

and commonalities are more evident. Interestingly, each uses a different interpretation of

resolution in sequent calculus: as cuts on literals, as cuts on resolvents, and as axioms.

Moreover we present a complexity analysis of each translation and discuss how they are

related.

2. Preliminaries

We work with classical first-order logic without equality. Terms are variables (x, y, . . .) or

functions (f, g, . . .) applied to terms (a constant is a 0-ary function). Formulas (P,Q, . . .)

are composed of predicate symbols (p, q, . . .) applied to terms, and the connectives ¬, ∨,

∧, ∀, ∃, >, and ⊥. A variable is free in a formula if it is not quantified over. Otherwise

it is bound. An atom A is a formula composed of one n-ary predicate symbol and no

connective. A literal is an atom (A) or its negation (¬A). L denotes the dual of a literal

L (i.e. if A is an atom, A = ¬A and ¬A = A). A formula is said to be in conjunctive

normal form (i.e., CNF) if it is a prenexed (all quantifiers occur at the head) conjunction

of disjunction of literals. Every formula in classical logic can be transformed into CNF

form using logical equivalences. A clause (C,D, . . .) is a disjunction of literals, possibly

with free variables. Let x1, . . . , xn denote the free variables of a clause C∗. The universal

closure of C∗ is defined as C = ∀x1 . . . ∀xn.C∗. In what follows, we use the ∗ superscript

to distinguish between a clause (with free variables) and its universal closure. While this

may seem counter-intuitive, we choose this notation because most of the time we will

deal with the universal closure C of a clause instead of its open form C∗.

G. Reis, B. Woltzenlogel Paleo 4

2.1. Resolution

Resolution is a calculus used for proving unsatisfiability of a formula in propositional or

first-order (classical) logic. It works on skolemized formulas in conjunctive normal form

(CNF) and it is used in most first-order automated theorem provers in some modified

and extended form. A formula F is unsatisfiable iff there exists a resolution refutation of

F (i.e. a derivation of the empty clause � from the clauses in the CNF of F) (Robinson

1965). Due to the duality between unsatisfiability and validity in classical logic, one can

show the validity of a formula F by presenting a resolution refutation of ¬F .

Definition 1 (Resolution calculus). Let Ci be a disjunction of literals and σ be the

most general unifier (m.g.u.) of A and A′. The resolution and factoring rules of the

resolution calculus are:

C1 ∨A ∨ C2 D1 ∨A′ ∨D2

(C1 ∨ C2 ∨D1 ∨D2)σ
R

C1 ∨A ∨ C2 ∨A′ ∨ C3

(C1 ∨A ∨ C2 ∨ C3)σ
F

Example 1. The following is the specification of a family of unsatisfiable clause sets,

where a, b are constants and xi are variables:

p1(x1) ∨ · · · ∨ pn(xn)

q1 ∨ ¬p1(a)

¬q1 ∨ ¬p1(b)

q2 ∨ p1(x1) ∨ ¬p2(a)

¬q2 ∨ p1(x1) ∨ ¬p2(b)

...

qn ∨ p1(x1) ∨ · · · ∨ pn−1(xn−1) ∨ ¬pn(a)

¬qn ∨ p1(x1) ∨ · · · ∨ pn−1(xn−1) ∨ ¬pn(b)

We take the clause set when n = 2 for our example:

{p1(x1) ∨ p2(x2), q1 ∨ ¬p1(a), ¬q1 ∨ ¬p1(b), q2 ∨ p1(x1) ∨ ¬p2(a), ¬q2 ∨ p1(x1) ∨ ¬p2(b)}

The resolution refutation (with omitted parentheses) is:

ρ1
q1

ρ2
¬q1
�

R

Where ρ1 and ρ2 are, respectively:

q1 ∨ ¬p1a
η1
p1x1

q1 R
¬q1 ∨ ¬p1b

η1
p1x1

¬q1 R

And η1 is:

q2 ∨ p1x1 ∨ ¬p2a p1x1 ∨ p2x2
q2 ∨ p1x1 R,F

¬q2 ∨ p1x1 ∨ ¬p2b p1x1 ∨ p2x2
¬q2 ∨ p1x1 R,F

p1x1
R,F

Complexity of Translations from Resolution to Sequent Calculus 5

Notice how the sub-derivation η1 of p1(x1) is used by both ρ1 and ρ2. By representing

this directed acyclic graph (DAG) graphically, this can be seen more clearly:

¬q2 ∨ p1(x1) ∨ ¬p2(b)p1(x1) ∨ p2(x2)q2 ∨ p1(x1) ∨ ¬p2(a)

¬q2 ∨ p1(x1) ∨ p1(x1)q2 ∨ p1(x1) ∨ p1(x1)

¬q2 ∨ p1(x1)q2 ∨ p1(x1)

p1(x1) ∨ p1(x1)

¬q1 ∨ ¬p1(b)p1(x1)q1 ∨ ¬p1(a)

¬q1q1

�

It is straightforward to generalize the example DAG proof shown above to other values

of n. For any n, the DAG proof is a tower of fixed width, height 2n, length (i.e. number

of nodes) O(n) and size (i.e. number of symbols) O(n2). If, however, the DAG were

expanded to a tree, its length and its size would be Ω(2n) (i.e. an exponential blow up

would occur), because the sub-derivations ηk (1 ≤ k ≤ n) would have to be duplicated.

Because of the worst-case exponential blow-up that can happen if DAG proofs are ex-

panded to proof trees, as illustrated in Example 1, automated theorem provers invariably

represent resolution proofs as DAGs during and after proof search. Since the translations

analyzed here use resolution proofs produced by automated theorem provers, their com-

plexities will be parametrized by the length of resolution proofs as DAGs.

Moreover, the result of all translations are sequent calculus proofs of the refuted clause

set, i.e. skolemized and in CNF. Therefore, we shall not account for any blow-up on the

input size due to normalization.

2.2. Sequent Calculus

Sequent calculus proof systems were proposed by Gentzen (Gentzen 1969) in order to

study normalization of proofs in classical and intuitionistic first-order logics. Their adapt-

ability to many logics and the uniformity with which one could prove the system’s con-

sistency made the formalism very popular among logicians. A sequent is a structure

Γ ` ∆, where Γ and ∆ are multi-sets of formulas and ` denotes the entailment relation.

Its meaning is that the conjunction of the formulas in Γ implies the disjunction of the

formulas in ∆. A sequent calculus is a collection of inference rules on sequents. In this

paper we will use the sequent calculus LK for classical logic in Figure 1. An LK proof is

a tree of inference rule applications where all leaves are axioms init, ⊥l or >r, otherwise

we call it an LK derivation.

G. Reis, B. Woltzenlogel Paleo 6

Γ, A ` ∆, A
init

Γ ` ∆, P Γ, P ` ∆

Γ ` ∆
cut

Γ,⊥ ` ∆
⊥l

Γ ` ∆,> >r

Γ ` ∆, P

Γ,¬P ` ∆
¬l

Γ, P ` ∆

Γ ` ∆,¬P
¬r

P,Q,Γ ` ∆

P ∧Q,Γ ` ∆
∧l

Γ ` ∆, P Γ ` ∆, Q

Γ ` ∆, P ∧Q
∧r

P,Γ ` ∆ Q,Γ ` ∆

P ∨Q,Γ ` ∆
∨l

Γ ` ∆, P,Q

Γ ` ∆, P ∨Q
∨r

P{x← α},Γ ` ∆

∃x.P,Γ ` ∆
∃l

Γ ` ∆, P{x← t}
Γ ` ∆, ∃x.P ∃r

P{x← t},Γ ` ∆

∀x.P,Γ ` ∆
∀l

Γ ` ∆, P{x← α}
Γ ` ∆, ∀x.P ∀r

P, P,Γ ` ∆

P,Γ ` ∆
cl

Γ ` ∆, P, P

Γ ` ∆, P
cr

Fig. 1. LK: Sequent calculus for classical logic (A is an atom, α is a variable not

contained in P , Γ or ∆, and t does not contain variables bound in P).

Note that we are using the additive version of the binary rules. For certain translations,

a multiplicative version of the cut-rule is needed (i.e. one that splits the conclusion

contexts between the premises). In this case, we can safely assume the use of weakening,

since this rule is length-preserving admissible. We formally show this property after

defining proof length†.

Remark 1. For the sake of space, the main formula of a rule is sometimes omitted and

considered to be in the context Γ.

Example 2. We show a sequent calculus proof for the same example as before with

n = 1. In this case, the clause set is: {p1(x1), q1 ∨ ¬p1(a), ¬q1 ∨ ¬p1(b)}.
To show unsatisfiability of a set of formulas Γ in sequent calculus, we need to show

a proof of Γ `. Let Γ be {∀x1.p1(x1), q1 ∨ ¬p1(a), ¬q1 ∨ ¬p1(b)}. One of the possible

sequent calculus proofs of Γ’s unsatisfiability is:

† The dual argument also works: with multiplicative rules, contraction is admissible. Choosing additive
rules maximizes the number of invertible rules and eases the definition of the translation described in

Section 4.

Complexity of Translations from Resolution to Sequent Calculus 7

Γ, p1(a), p1(b), q1 ` q1
init

Γ, p1(a), p1(b), q1,¬q1 `
¬l

Γ, p1(a), p1(b), q1 ` p1(b)
init

Γ, p1(a), p1(b), q1,¬p1(b) `
¬l

Γ, p1(a), p1(b), q1 `
∨l

Γ, p1(a), p1(b) ` p1(a)
init

Γ, p1(a), p1(b),¬p1(a) `
¬l

Γ, p1(a), p1(b) `
∨l

Γ, ∀x1.p1(x1), p1(a) `
∀l

Γ,∀x1.p1(x1), ∀x1.p1(x1) `
∀l

Γ `
cl

2.3. Length measures

Proofs are measured by number of nodes. Although the sizes of first-order terms are not

always negligible, all translations use the same term instantiation as the resolution proof

and, therefore, term size has no impact in comparing them.

Definition 2. The length |ψ| of a proof ψ is the number of nodes in the proof. In the

case of resolution, each node is a clause occurring in the DAG. In the case of sequent

calculus, each node is a sequent occurring in the proof tree.

Definition 3. The length |F | of a formula F is the number of logical connectives and

quantifiers (¬, ∨, ∧, ∀, ∃) occurring in F ‡.

Remarks about Weakening: Note that we use a sequent calculus where weakening

is implicit in the init, >r and ⊥l rules. In such a calculus, the following lemma can be

proven:

Lemma 1. Let ϕ be a proof of Γ ` ∆, then there exist proofs ϕl and ϕr of Γ, P ` ∆

and Γ ` ∆, P , respectively, such that |ϕ| = |ϕr| = |ϕl|.

Proof sketch We proceed by structural induction on the proof tree. For the base case,

when ϕ contains a single nullary inference (init, ⊥l or >r) with conclusion Γ ` ∆, then

ϕl and ϕr can be constructed by applying the corresponding nullary inference (init, ⊥l

or >r) with conclusions Γ, P ` ∆ and Γ ` ∆, P , respectively. For the inductive cases (for

each rule), the induction hypothesis gives us subproofs with the desired extra formula P

for the premises and then we reapply the rule normally. As, in each step, the construction

of the proofs ϕl and ϕr use the same number of inferences as in the original proof ϕ,

|ϕ| = |ϕr| = |ϕl|.

‡ Any other definition of length that is linearly related to the number of connectives and quantifiers

(e.g. number of symbols) would suffice and would not change the complexity results presented here.
Defining length by number of connectives makes Theorem 5 easier to state and to prove, because the
length of a sequent calculus proof is more clearly related to the number of connectives in the formulas

in its end-sequent than to the number of symbols.

G. Reis, B. Woltzenlogel Paleo 8

This lemma is important, because the second and third translations defined in later

sections of this paper result in proofs with extra formulas in the contexts of sequents.

We shall also use the following notation to denote a proof ϕ′ obtained from ϕ by adding

Π and Θ to all sequents of ϕ (without length increase, as per Lemma 1):

ϕ
Γ ` ∆

Π,Γ ` ∆,Θ
weak

Note that weak is not an inference rule, but a meta-notation that allows us to write

proofs omitting context formulas.

2.4. Complexity

In this paper, proof complexity is analyzed using the asymptotic notations O or Ω. Since

we are dealing with proof length, the assumption that the functions are non-negative in

the definition below is reasonable.

Definition 4. Let f(x) and g(x) be two non-negative functions. We say that f(x) ∈
O(g(x)) iff there exists x0 and k > 0 such that f(x) ≤ k × g(x) for every x ≥ x0.

Intuitively, f(x) ∈ O(g(x)) means that the function f grows at most as fast as g. In

other words, g is an upper bound on the growth rate of f .

Definition 5. Let f(x) and g(x) be two functions. We say that f(x) ∈ Ω(g(x)) iff there

exists x0 and k > 0 such that f(x) ≥ k × g(x) for every x ≥ x0.

Therefore, Ω is the dual of O: f(x) ∈ Ω(g(x)) means that f grows at least as fast as

g. Hence g is a lower bound on the growth rate of f .

Our analyses are comparing proof length, and in many cases we use the worst possible

proof. This means the proof that would provide the highest growth rate. When using Ω,

we have a lower bound for the growth rate of the worst case. When using O, we have an

upper bound for all cases.

3. First Translation: Resolutions as Cuts on the Resolved Literal

The translation described in this section is basically the one defined by the algorithm

from (Hetzl et al. 2013). One notable difference is that we consider the problem to be in

CNF. Note that there is no complexity analysis in (Hetzl et al. 2013), and the translation

is presented as a pseudo-code without a formal definition.

3.1. Translation

Let R be a resolution refutation of a set of clauses C∗1 , . . . , C
∗
n with free variables. The

translation defined will transform R into an LK proof of the sequent C1, . . . , Cn `, where

Ck is the universal closure of C∗k . This is obtained by using the resolution refutation as a

Complexity of Translations from Resolution to Sequent Calculus 9

skeleton for the sequent calculus proof, where each clause is represented as a sequent and

each resolution step is interpreted as an atomic cut. In order to do this, we must ground

the resolution DAG (because the cut rule does not allow unification as the resolution

rule does). In turn, grounding requires expansion of the DAG into a tree, because a DAG

node that is used as a premise more than once may have to be distinctly instantiated

more than once.

Definition 6. Let R be a resolution refutation DAG, we denote by R̂ the representation

of R as a ground derivation tree in the resolution calculus (Definition 1). This is achieved

in two steps. First the DAG is transformed into a tree by duplicating sub-graphs with

more than one parent. Grounding is achieved by propagating the m.g.u. computed at

each rule application upwards, i.e., each resolution step is rewritten as:

ρ1
C1 ∨A ∨ C2

ρ2
D1 ∨A′ ∨D2

(C1 ∨ C2 ∨D1 ∨D2)σ
R

ρ1σ
(C1 ∨A ∨ C2)σ

ρ2σ

(D1 ∨A′ ∨D2)σ

(C1 ∨ C2 ∨D1 ∨D2)σ
R

Therefore, on the ground resolution, all m.g.u.s computed below a clause will be applied

to it compositionally.

Theorem 1. In the worst case, |R̂| ∈ Ω(2|R|).

Proof. The ·̂ transformation expands the DAG into a tree, and it is well-known that

certain DAGs (e.g. the one shown in Example 1) result in exponentially larger trees.

The exponential blow-up is not a defect of ·̂ . As the following stronger theorem states,

any grounding operation must suffer an exponential blow-up.

Theorem 2. There is a sequence of clause sets Sn admitting DAG resolution refutations

Rn with |R| ∈ O(n) such that any ground resolution refutation R′n of a grounding of Sn

is such that |R′n| ∈ Ω(2n).

Proof. Let Sn be the sequence of clause sets described in Example 1. It admits DAG

resolution refutations of linear size, as shown in Example 1. A grounding of Sn would

require instantiating p1(x1) to p1(a) and p1(b), and p1(x1) ∨ p2(x2) to p1(a) ∨ p2(a),

p1(a)∨p2(b), p1(b)∨p2(a) and p1(b)∨p2(b), and so on. The clause/node p1(x1)∨. . .∨pn(xn)

would need 2n instances.

Definition 7. Let C be a clause ¬A1 ∨ . . .∨¬An ∨B1 ∨ . . .∨Bm where Ai (1 ≤ i ≤ n)

and Bk (1 ≤ k ≤ m) are atoms. Then seq(C) is the sequent A1, . . . , An ` B1, . . . , Bm.

Definition 8. LetR be a resolution refutation DAG. We define seq(R) as the LK deriva-

tion obtained by taking R̂ and transforming each clause C into seq(C), and interpreting

resolution and factoring inferences as cut and contraction, respectively.

Observe that the cuts obtained from resolution inferences will be multiplicative. Nev-

ertheless, we can use additive cuts instead due to the weakening lemma (Lemma 1).

Note that seq(R) is an LK derivation of the empty sequent · ` · from non-tautological

G. Reis, B. Woltzenlogel Paleo 10

axioms. This structure is transformed into the desired proof of C1, . . . , Cn ` via the

operation of context product. In the definition below, the notation ◦ denotes merging of

sequents, i.e. (Γ ` ∆) ◦ (Λ ` Π) is Γ,Λ ` ∆,Π.

Definition 9 (Context product). Let T be a sequent and ϕ be an LK derivation with

end-sequent S such that no free variable in T occurs as eigen-variable in ϕ. We define

the context product T ? ϕ (which yields a derivation of T ◦ S) inductively:

— If ϕ consists of a leaf, then T ? ϕ is composed of one sequent: T ◦ S.
— If ϕ ends with a unary rule ξ:

ϕ′

S′

S
ξ

then T ? ϕ is defined as:

T ? ϕ′

T ◦ S′
T ◦ S ξ

Since T does not contain free variables which are eigen-variables of ϕ, the context

product is well defined also if ξ is ∀r or ∃l, although this case does not occur in our

application since formulas need to be skolemized for using resolution.
— If ϕ ends with a binary rule ξ:

ϕ1

S1

ϕ2

S2

S
ξ

then T ? ϕ is defined as:
T ? ϕ1

T ◦ S1

T ? ϕ2

T ◦ S2

T ◦ S ξ

Since T is part of the context, and all binary rules are additive in the calculus

considered, their formulas are copied to both premises. S1 and S2 differ from each

other at most on auxiliary formulas.

The result of (C1, . . . , Cn `)?seq(R) is a derivation of C1, . . . , Cn ` from (C1, . . . , Cn `
) ◦ seq(C ′i) for i ∈ {1, . . . , n}, where C ′i is a ground instance of Ci. These axioms are

tautological and can be proved easily.

Theorem 3. Let C1, . . . , Cn be the universally closed formulas of a refutable clause set.

Let C ′i be a ground instance of one of those formulas. Then the sequent (C1, . . . , Cn `
) ◦ seq(C ′i) has an LK proof ϕ such that |ϕ| ∈ O(|Ci|).

Proof. To see that the sequent is provable, it suffices to observe that all atoms occurring

in seq(C ′i) occur in the defined sequent in a dual position because of Ci on the left

(remember that in seq(C ′i) positive atoms are on the right and negative atoms are on

the left). A proof of the sequent can be obtained by instantiating the variables properly

and decomposing Ci exhaustively, until its atomic parts. Since this formula has |Ci|
connectives, this will be the length of the proof.

All those steps are summarized in the definition of the translation below.

Complexity of Translations from Resolution to Sequent Calculus 11

Definition 10. Let R be a resolution refutation DAG of a clause set C∗1 , . . . , C
∗
n. We

define TL(R) as the LK proof obtained from (C1, . . . , Cn `) ? seq(R), where each Ci

is the universal closure of C∗i and all axioms are proved (according to the LK proof

provided by Theorem 3).

Example 3. For brevity, we use the clause set of Example 1 for n = 1. Let R be its

resolution refutation:

¬q1 ∨ ¬p1(b)p1(x1)q1 ∨ ¬p1(a)

¬q1q1

�

According to Definition 8, seq(R) (using additive cuts) is:

` p1(a), q1 p1(a) ` q1
` q1

cut
q1 ` p1(b) p1(b), q1 `

q1 `
cut

` cut

Let Γ = {¬q1 ∨ ¬p1(b), q1 ∨ ¬p1(a),∀x.p1(x)}. Next, we compute the context product

(Definition 9) (Γ `) ? seq(R), resulting in:

Γ ` p1(a), q1 Γ, p1(a) ` q1
Γ ` q1

cut
Γ, q1 ` p1(b) Γ, p1(b), q1 `

Γ, q1 `
cut

Γ ` cut

Proofs of the leaves are straighforward:

Γ, p1(a) ` p1(a), q1
init

Γ ` p1(a), q1
∀l

Γ, p1(a), q1 ` q1
init

Γ, p1(a) ` p1(a), q1
init

Γ, p1(a),¬p1(a) ` q1
¬l

Γ, p1(a) ` q1
∨l

Γ ` q1
cut ϕ

Γ, q1 `
Γ ` cut

Where ϕ is:

Γ, q1, p1(b) ` p1(b)
init

Γ, q1 ` p1(b)
∀l

Γ, p1(b), q1 ` q1
init

Γ, p1(b), q1,¬q1 `
¬l

Γ, p1(b), q1 ` p1(b)
init

Γ, p1(b), q1,¬p1(b) `
¬l

Γ, p1(b), q1 `
∨l

Γ, q1 `
cut

G. Reis, B. Woltzenlogel Paleo 12

3.2. Complexity

Theorem 4. If R is a resolution refutation, then |TL(R)| ∈ Ω(2|R|) in the worst case.

Proof. The first step of TL(R) consists of obtaining seq(R), which requires expanding

the DAG. According to Theorem 1, this operation may cause an exponential blow-up in

the length of the proof.

4. Second Translation: Resolutions as Cuts on the Resolvent

The second translation of resolution to sequent calculus analyzed here is essentially the

one used in the foundational proof certificates (FPC) framework for checking resolution

proofs (Chihani et al. 2017), with only one minor difference. Whereas the FPC framework

uses the one-sided polarized focused calculus LKF (Miller 2017b), here the two-sided

calculus for classical logic without focusing (as defined in Section 2.2) is used.

4.1. Translation

This translation also interprets resolution steps as cuts, but this time the cut formula
is the resolvent, including factoring, instead of the resolved atom. The key idea is that
each resolution (plus factoring) step deriving a clause C∗ from clauses D∗ and E∗ can
be represented in sequent calculus by a derivation of the following form

ϕ
∆ ` C

...
∆, C `

∆ ` cut

where C,D,E denote the universal closure of clauses C∗, D∗, E∗ and ∆ is a set of for-

mulas containing D and E. Note that this cut can be quantified, as C∗ may contain

free variables. ∆ ` C is provable (not surprisingly, because C∗ is derived from D∗ and

E∗, which are in ∆ and resolution is sound and sequent calculus is complete), and the

construction of its proof ϕ is explained in the demonstration of Theorem 5. On the right

branch, the same construction is repeated for the next resolvent, and this continues until

the empty clause (i.e. ⊥) is reached, in which case the right branch can be closed by the

rule ⊥l. The translation procedure based on this idea is formally defined below.

Definition 11. Let R be a resolution refutation of the clause set C∗1 , . . . , C
∗
n, with

resolvents (plus factoring) C∗n+1, . . . , C
∗
n+m and C∗n+m = ⊥. Letting Γ be the set of

universally closed clauses C1, . . . , Cn, the sequence of proofs ψj (0 ≤ j < m) is defined
as:

ϕj+1

Γ, . . . , Cn+j ` Cn+j+1

ψj+1

Γ, . . . , Cn+j , Cn+j+1 `
Γ, . . . , Cn+j `

cut

with ϕj+1 being any linearly sized proof of Γ, . . . , Cn+j ` Cn+j+1 (cf. Theorem 5) and
ψm being defined as:

Γ, Cn+1, . . . , Cn+m `
⊥l

Finally, TR(R) is defined as the sequent calculus proof ψ0 of Γ `.

Complexity of Translations from Resolution to Sequent Calculus 13

The existence of the linearly sized proofs ϕk needed in Definition 11 is shown in the

following theorem.

Theorem 5. Let C∗1 and C∗2 be two clauses that resolve to C∗3 , and let Ci denote the

universal closure of a clause C∗i . Then the sequent C1, C2 ` C3 has an LK proof ϕ such

that |ϕ| ∈ O(|C1|+ |C2|+ |C3|).

Proof. The proof ϕ can be constructed in a bottom-up manner as follows. Begin by

instantiating the quantified variables of C3 and decomposing C3 until only atoms are

left. Then instantiate the variables of C1 and C2 using either the eigen-variable used for

C3 or terms used in the unifier of the resolution step that derives C∗3 from C∗1 and C∗2 .

Finally, apply ∨l to C1 and then to C2 exhaustively. Note that after C1 is completely

decomposed, all branches will be closed (the dual atom is available from C3), except the

one that contains the resolved literal. This is continued by the decomposition of C2 and

eventually the dual of the resolved atom will be in the sequent.

The total number of nodes in this proof is equal to the number of logical connectives

and quantifiers occurring in C1, C2 and C3. Therefore, |ϕ| ∈ O(|C1|+ |C2|+ |C3|).

Due to the weakening lemma (Lemma 1), the sequent Γ, C1, C2 ` ∆, C3 is provable.

Example 4. We translate part of the proof from Example 1, namely:

¬q2 ∨ p1(x1)q2 ∨ p1(x1)

p1(x1) ∨ p1(x1)

¬q1 ∨ ¬p1(b)p1(x1)q1 ∨ ¬p1(a)

¬q1q1

�

Let Γ = {q1 ∨ ¬p1(a),¬q1 ∨ ¬p1(b),∀x.(q2 ∨ p1(x)),∀x.(¬q2 ∨ p1(x)), }. According to
Definition 11, ψ0 is:

ϕ1

Γ ` ∀x.p1(x)
ψ1

Γ, ∀x.p1(x) `
Γ ` cut

Where ϕ1 is the proof:

G. Reis, B. Woltzenlogel Paleo 14

Γ, q2 ` p1(α), q2
init

Γ, q2,¬q2 ` p1(α)
¬l

Γ, q2, p1(α) ` p1(α)
init

Γ, q2,¬q2 ∨ p1(α) ` p1(α)
∨l

Γ, p1(α),¬q2 ∨ p1(α) ` p1(α)
init

Γ, q2 ∨ p1(α),¬q2 ∨ p1(α) ` p1(α)
∨l

Γ ` p1(α)
∀l

Γ ` ∀x.p1(x)
∀r

Observe that the factoring step is considered as part of the resolution (cf. (Chihani

et al. 2017, Section 7.3)). ψ1 begins with a cut on another resolvent (ϕ2 is explicit):

Γ, p1(a), q1 ` q1
init

Γ, p1(a) ` q1, p1(a)
init

Γ, p1(a),¬p1(a) ` q1
¬l

Γ, p1(a) ` q1
∨l

Γ, ∀x.p1(x) ` q1
∀l ψ2

Γ,∀x.p1(x), q1 `
Γ, ∀x.p1(x) `

cut

ψ2 continues as:

Γ, p1(b), q1 ` ¬q1, q1
init

Γ, p1(b), q1,¬q1 ` ¬q1
¬l

Γ, p1(b), q1 ` ¬q1, p1(b)
init

Γ, p1(b), q1,¬p1(b) ` ¬q1
¬l

Γ, p1(b), q1 ` ¬q1
∨l

Γ, ∀x.p1(x), q1 ` ¬q1
∀l ψ3

Γ, ∀x.p1(x), q1,¬q1 `
Γ, ∀x.p1(x), q1 `

cut

Finally, ψ3 cuts on ⊥, corresponding to the empty clause:

Γ,∀x.p1(x), q1 ` ⊥, q1
init

Γ,∀x.p1(x), q1,¬q1 ` ⊥
¬l

Γ, ∀x.p1(x), q1,¬q1,⊥ `
⊥l

Γ, ∀x.p1(x), q1,¬q1 `
cut

Observe how, even though the clause p1(x) was used twice in the resolution refutation,

we only need to cut on it once in the sequent calculus proof. Since it persists in the

context, it can be used to prove the left branch of the cuts on both q1 and ¬q1.

4.2. Complexity

In this translation, the resolution refutation DAG does not need to be expanded. Each

resolution step in the DAG is translated to a single cut in the sequent calculus proof.

Resolvents become universally closed clauses in the antecedent of the sequent in the

right branch of the proof being constructed, which remain in the context and can be

Complexity of Translations from Resolution to Sequent Calculus 15

reused as many times as needed. Consequently, the length of the sequent calculus proof

is polynomial in the length of the DAG resolution refutation.

Theorem 6. Let R be a DAG resolution refutation. Then |TR(R)| ∈ O(|R|2) in the

worst case.

Proof. The DAG resolution refutation R contains at most O(|R|) resolution steps

(each node is either an input clause or the result of a resolution step). In the result of

TR(R), each of these steps will be a cut, whose left branch has a proof of size at most

3 ∗ k, where k is the size of the biggest universally closed clause in R. It is known that

|k| ∈ O(|R|) (see (Ben-Sasson & Wigderson 2001)). Consequently, |TR(R)| ∈ O(|R|2).

5. Third Translation: Resolutions as Axioms

The third translation defined and analyzed here is inspired by (and essentially the same

as) the translation used in the proof of relative soundness of Resolution Modulo (i.e.

Extended Narrowing and Resolution, more precisely) with respect to (cut-free) Sequent

Calculus Modulo in (Hermant 2010) (which was itself inspired by works on the inverse

method (Maslov 1964, Degtyarev & Voronkov 2001, Mints 1990, 1993)). For the sake of

simplicity, deduction modulo is left aside, as it is (like focusing, in the case of the second

translation) outside the scope and unnecessary to the goals of this paper.

5.1. Translation

The intuition of this translation is the following. Assume two clauses a∨ b and ¬b∨ c are

resolved to obtain a∨ c. Moreover, let Γ denote a set with the other clauses in the leaves

of this resolution refutation. Our goal is to find a proof of Γ, a ∨ b,¬b ∨ c `. This proof

begins like this:

Γ, a `
Γ, a,¬b ` weak

Γ, b ` b init

Γ, b,¬b `
¬l

Γ, a ∨ b,¬b `
∨l

Γ, c `
Γ, a ∨ b, c ` weak

Γ, a ∨ b,¬b ∨ c `
∨l

Note how the resolution step on the atom b became an init (a.k.a. axiom) inference

with main formula b. Now we need to find proofs for the open leaves. Imagine the fringe

of the resolution refutation. If, for a moment, we ignore the resolution of a ∨ b,¬b ∨ c
into a∨ c, the set of “leaves” of the refutation will be Γ, a∨ c. Since the sequent calculus

proof is built by induction on the resolution steps (starting from the lower most one),

we know that that there exists a derivation of Γ, a ∨ c `. By invertibility of ∨l, we can

obtain derivations of Γ, a ` and Γ, c `, which are precisely what we need to finish the

proof above.

The definition of this translation is more involved when quantification and factoring

G. Reis, B. Woltzenlogel Paleo 16

are considered, but the idea is essentially the same. It relies on the following lemmas (Her-

mant 2010, Lemma 14).

Lemma 2. Let C∗a and C∗b be two clauses that resolve into C∗, and let π be a proof of

Γ, C ` ∆. Then there exists a proof π′ of Γ, Ca, Cb ` ∆.

Proof. The proof proceeds by structural induction on π.

1 Base case: π consists of an axiom. Then it is either an application of init, ⊥l or >r.

We distinguish two cases:

(a) The main formula is not C.

In this case, π′ consists of the same rule applied to the sequent Γ, Ca, Cb ` ∆.

(b) The main formula is C.

Then the applied rule is either init or ⊥l. We treat both these cases separately:

i π ends with ⊥l.
Then, without loss of generality, we have that:

C = ⊥
Ca = ∀x.p(x)

Cb = ∀y.¬p′(y)

With p and p′ unifiable by m.g.u. σ. Therefore p(x)σ = p(t) = p′(t′) = p′(y)σ,
and π′ is constructed by instantiating the variables with the m.g.u.:

Γ, p(t),` ∆, p′(t′)
init

Γ, p(t),¬p′(t′) ` ∆
¬l

Γ,∀x.p(x), ∀y.¬p′(y) ` ∆
∀l

ii π ends with init.
Then, without loss of generality, we have that:

C = Aσ

Ca = ∀x.(p(x) ∨A)

Cb = ∀y.¬p′(y)

With p and p′ unifiable by m.g.u. σ. Therefore p(x)σ = p(t) = p′(t′) = p′(y)σ,
and π′ is:

Γ, p(t) ` ∆, p′(t′)
init

Γ,¬p′(t), p(t) ` ∆
¬l

Γ, Aσ ` ∆
init

Γ,¬p′(t), Aσ ` ∆
weak

Γ, p(t) ∨Aσ,¬p′(t) ` ∆
∨l

Γ, ∀x.(p(x) ∨A),∀y.¬p′(y) ` ∆
∀l

The rightmost application of init is the same one as in π.

2 Inductive case: π ends with an application of ρ. We distinguish three cases:

Complexity of Translations from Resolution to Sequent Calculus 17

(a) ρ operates on a formula in Γ or ∆. In this case, the rule is simply duplicated on

π′, whether it is unary or binary:
Unary ρ:

ϕ
Γ′, C ` ∆′

Γ, C ` ∆
ρ

ϕ′

Γ′, Ca, Cb ` ∆′

Γ, Ca, Cb ` ∆
ρ

Binary ρ:

ϕ1

Γ1, C ` ∆1

ϕ2

Γ2, C ` ∆2

Γ, C ` ∆
ρ

ϕ′1
Γ1, Ca, Cb ` ∆1

ϕ′2
Γ2, Ca, Cb ` ∆2

Γ, Ca, Cb ` ∆
ρ

By induction hypothesis, ϕ′, ϕ′1, and ϕ′2 can be constructed.

(b) ρ is a contraction on C. In this case, the contraction is applied twice to obtain π′:

ϕ
Γ, C, C ` ∆

Γ, C ` ∆
cl

ϕ′

Γ, Ca, Ca, Cb, Cb ` ∆

Γ, Ca, Ca, Cb ` ∆
cl

Γ, Ca, Cb ` ∆
cl

Applying the induction hypothesis once to ϕ yields a derivation of Γ, Ca, Cb, C `
∆. Technically, the IH cannot be applied to this derivation because the lemma

changes the structure of the proof, so we lose the guarantee that the inductive

measure has decreased. This case can be solved by generalizing the lemma to

handle an arbitrary number of occurrences of C. All cases above will proceed

analogously. In the present case, the IH could be applied to ϕ obtaining ϕ′ without

problems. The next case would be slightly more complicated, though, since the

IH would need to be applied to ϕ1 and ϕ2. Moreover, the notation would be

considerably heavier. We choose to maintain this cleaner proof, so that the process

is easier to understand. The interested reader is invited to go through the exercise

of generalizing the proof.

(c) ρ is a logical rule operating on C.
Then, without loss of generality, we have that:

C = ∀z.(D1σ ∨D2σ)

Ca = ∀x.(D1 ∨ p(x))

Cb = ∀y.(D2 ∨ ¬p′(y))

Where σ is the m.g.u. of p and p′. Therefore p(x)σ = p(t) = p′(t′) = p′(y)σ.

G. Reis, B. Woltzenlogel Paleo 18

Since all quantifiers can be introduced at once§, we can assume π ends with:

Γ, D1σ
′ ∨D2σ

′ ` ∆

Γ, ∀z.(D1σ ∨D2σ) ` ∆
∀l

Where σ′ is the composition of σ with the instantiation of the variables in z.
Because of associativity of ∨, invertibility of ∨l, and admissibility of weakening
(Lemma 1), we can assume the existence of the following proofs:

ϕ1

Γ, D1σ
′ ` ∆

ϕ2

Γ, D2σ
′ ` ∆

Using those proofs, we can construct π′:

ϕ1

Γ, D1σ
′ ` ∆

Γ, D1σ
′, D2σ

′ ∨ ¬p′(t′) ` ∆
weak

ϕ2

Γ, D2σ
′ ` ∆

Γ, p(t), D2σ
′ ` ∆

weak
Γ, p(t) ` ∆, p′(t′)

init

Γ, p(t),¬p′(t′) ` ∆
¬l

Γ, p(t), D2σ
′ ∨ ¬p′(t′) ` ∆

∨l

Γ, D1σ
′ ∨ p(t), D2σ

′ ∨ ¬p′(t′) ` ∆
∨l

Γ, ∀x.(D1 ∨ p(x)), ∀y.(D2 ∨ ¬p′(y)) ` ∆
∀l

The proof of the next Lemma for factoring rules is essentially the same as before.

Lemma 3. Let C∗a be a clause that factors into C∗, and let π be a proof of Γ, C ` ∆.

Then there exists a proof of Γ, Ca ` ∆.

Proof. The proof proceeds by structural induction on π.

1 Base case: π consists of an axiom. Then it is either an application of init, ⊥l or >r.

We distinguish two cases:

(a) The main formula is not C.

In this case, π′ consists of the same rule applied to the sequent Γ, Ca ` ∆.

(b) The main formula is C.

Then the applied rule must be init, since it is impossible to get the empty clause

by factoring.
Then, without loss of generality, we have that:

C = p(t)

Ca = ∀x.(p(x) ∨ p′(x))

With p and p′ unifiable with m.g.u. σ. Therefore p(x)σ = p(t) = p′(t′) = p′(x)σ,

§ One way to see this is by focusing on the formula.

Complexity of Translations from Resolution to Sequent Calculus 19

and π′ is:

Γ, p(t) ` ∆
init

Γ, p′(t′) ` ∆
init

Γ, p(t) ∨ p′(t′) ` ∆
∨l

Γ,∀x.(p(x) ∨ p′(x)) ` ∆
∀l

Both applications of init are the same as in π, since p(t) = p′(t′).

2 Inductive case: π ends with an application of ρ. We distinguish three cases:

(a) ρ operates on a formula in Γ or ∆. In this case, the rule is simply duplicated on

π′, whether it is unary or binary:
Unary ρ:

ϕ
Γ′, C ` ∆′

Γ, C ` ∆
ρ

ϕ′

Γ′, Ca ` ∆′

Γ, Ca ` ∆
ρ

Binary ρ:

ϕ1

Γ1, C ` ∆1

ϕ2

Γ2, C ` ∆2

Γ, C ` ∆
ρ

ϕ′1
Γ1, Ca ` ∆1

ϕ′2
Γ2, Ca ` ∆2

Γ, Ca ` ∆
ρ

By induction hypothesis, ϕ′, ϕ′1, and ϕ′2 can be constructed.

(b) ρ is a contraction on C. In this case, the contraction is applied twice to obtain π′:

ϕ
Γ, C, C ` ∆

Γ, C ` ∆
cl

ϕ′

Γ, Ca, Ca, Cb, Cb ` ∆

Γ, Ca, Ca, Cb ` ∆
cl

Γ, Ca, Cb ` ∆
cl

Analogously to the previous case, ϕ′ can be obtained by generalizing the lemma

for an arbitrary number of occurrences of C.

(c) ρ is a logical rule operating on C.
Then, without loss of generality, we have that:

C = ∀y.(D1σ ∨ p(t) ∨D2σ)

Ca = ∀x.(D1 ∨ p(x) ∨ p′(x) ∨D2)

Where σ is the m.g.u. of p and p′. Therefore p(x)σ = p(t) = p′(t′) = p′(x)σ.
Since all quantifiers can be introduced at once¶, we can assume π ends with:

Γ, D1σ
′ ∨ p(t)σ′ ∨D2σ

′ ` ∆

Γ, ∀y.(D1σ ∨ p(t) ∨D2σ) ` ∆
∀l

Where σ′ is the composition of σ with the instantiation of the variables in y.

¶ One way to see this is by focusing on the formula.

G. Reis, B. Woltzenlogel Paleo 20

Because of associativity of ∨, invertibility of ∨l, and admissibility of weakening
(Lemma 1), we can assume the existence of the following proofs:

ϕ1

Γ, D1σ
′ ` ∆

ϕ2

Γ, p(t)σ′ ` ∆
ϕ3

Γ, D2σ
′ ` ∆

Using those proofs, we can construct π′:

ϕ1

Γ, D1σ
′ ` ∆

ϕ2

Γ, p(t)σ′ ` ∆

ϕ2

Γ, p′(t′)σ′ ` ∆
ϕ3

Γ, D2σ
′ ` ∆

Γ, p′(t′)σ′ ∨D2σ
′ ` ∆

∨l

Γ, p(t)σ′ ∨ p′(t′)σ′ ∨D2σ
′ ` ∆

∨l

Γ, D1σ
′ ∨ p(t)σ′ ∨ p′(t′)σ′ ∨D2σ

′ ` ∆
∨l

Γ, ∀x.(D1 ∨ p(x) ∨ p′(x) ∨D2) ` ∆
∀l

Using the construction in the proofs of Lemmas 2 and 3 we can define the following

translation.

Definition 12. Let R be a resolution refutation of the clause set C∗1 , . . . , C
∗
n and let Γ

be the set of universally closed clauses C1, . . . , Cn. We define TA(R), a cut-free sequent
calculus proof of Γ `, by traversing the rules of R (bottom-up). We start from the trivial
proof:

⊥ ` ⊥l

corresponding to the empty clause. This proof is transformed as we traverse R upwards,

depending on the inferences we encounter:

— If the inference is a resolution, then it looks like:

Ca Cb

C

We can assume that there exists a proof of Γ, C `. By Lemma 2, we can transform

this proof into a proof of Γ, Ca, Cb `.

— If the inference is factoring, then we proceed analogously, only using Lemma 3.

It is important to note that the proofs of Lemmas 2 and 3 are completely constructive

apart from one small detail: on the relevant inductive cases, we need to argue the “exis-

tence” of proofs due to invertibility of ∨l and associativity of ∨. The examples below show

that, since all the proofs in the process are constructed using the same process, finding

the relevant sequents and their proofs is straightforward (they are the highlighted ones).

Example 5. Let us apply this translation to a part of our running example, namely:

Complexity of Translations from Resolution to Sequent Calculus 21

p1(x1) ∨ p1(x1)

¬q1 ∨ ¬p1(b)p1(x1)q1 ∨ ¬p1(a)

¬q1q1

�

In the proofs below, highlighted sequents indicate that the proofs above them will be

used later on.
We start with the trivial proof:

⊥ ` ⊥l

corresponding to the empty clause, and proceed upwards. The next rule is a resolution
on q1 and ¬q1, hence a proof of q1,¬q1 ` must be constructed. This corresponds to
case 1(b)i of Lemma 2, which yields π0:

q1 ` q1
init

q1,¬q1 `
¬l

There is a choice for the next resolution to be processed. We (arbitrarily) chose the

one resulting in q1. The clause q1 was obtained from q1 ∨¬p1(a) and ∀x.p1(x) (note that

we need the universal closure of the clauses). According to Lemma 2, we can construct

a derivation of q1 ∨¬p1(a),∀x.p1(x),¬q1 ` from a derivation of q1,¬q1 ` (i.e., π0). Since

the lowermost rule (¬l) in π0 does not operate on the resolvent in question, we apply this

rule to our new proof first (Lemma 2, case 1a). The next rule (init) does operate on q1,

so, following case 1(b)ii of Lemma 2, we apply ∀l and ∨l to the clauses that generated

q1 and close, yielding π1:

q1 ` q1
init

q1, p1(a) ` q1
weak

p1(a) ` q1, p1(a)
init

¬p1(a), p1(a) ` q1
¬l

q1 ∨ ¬p1(a), p1(a) ` q1
∨l

q1 ∨ ¬p1(a), ∀x.p1(x) ` q1
∀l

q1 ∨ ¬p1(a), ∀x.p1(x),¬q1 `
¬l

Note how the new init rule operates on p1(a), the resolved literal to obtain q1. We

proceed with the resolution of ¬q1. We need to obtain a proof of

q1 ∨ ¬p1(a),∀x.p1(x),∀x.p1(x),¬q1 ∨ ¬p1(b) `

from π1. Since the first rule is already one operating on ¬q1, case 2c of Lemma 2 is

applicable. In this particular resolution step, D1 does not exist so only one application

of ∨l is needed. The leftmost premise is closed using π1 (note the highlighted sequents).

Thus π2 is:

G. Reis, B. Woltzenlogel Paleo 22

q1 ∨ ¬p1(a), ∀x.p1(x),¬q1 `

q1 ∨ ¬p1(a), ∀x.p1(x), p1(b),¬q1 `
weak

q1 ∨ ¬p1(a), ∀x.p1(x), p1(b) ` p1(b)
init

q1 ∨ ¬p1(a),∀x.p1(x), p1(b),¬p1(b) `
¬l

q1 ∨ ¬p1(a), ∀x.p1(x), p1(b),¬q1 ∨ ¬p1(b) `
∨l

q1 ∨ ¬p1(a),∀x.p1(x), ∀x.p1(x),¬q1 ∨ ¬p1(b) `
∀l

Observe how ∀x.p1(x) occurs twice in the end-sequent (and it must), representing the

fact that it was used twice in the resolution proof. On the next step, one occurrence of

∀x.p1(x) is replaced by its premise ∀x.(p1(x)∨p1(x)). Let Γ = {q1∨¬p1(a),¬q1∨¬p1(b)}.
According to Lemma 3, we can construct a proof of:

Γ,∀x.p1(x),∀x.(p1(x) ∨ p1(x)) `

from π2. The lowermost rule in π2 operates on one of the occurrences of ∀x.p1(x). Let

us assume it is on the occurrence that we are considering. Then, case 2c of Lemma 3

is applicable. This situation is simplified due to the fact that D1 and D2 are empty, so

only one application of ∨l is needed. The (duplicated) proofs of the premises (ϕ2 in the

Lemma) are obtained from π2 (the sequent highlighted in blue). Observe that these are

the ones whose existence is argued in the proof of the Lemma. The resulting proof is π3:

Γ, ∀x.p1(x), p1(b) ` Γ,∀x.p1(x), p1(b) `

Γ, ∀x.p1(x), p1(b) ∨ p1(b) `
∨l

Γ,∀x.p1(x), ∀x.(p1(x) ∨ p1(x)) `
∀l

The last step is to transform π3 into a proof of:

Γ,∀x.(p1(x) ∨ p1(x)),∀x.(p1(x) ∨ p1(x)) `

Following case 2a of Lemma 3, all rules that do not apply to ∀x.p1(x) are simply copied

in the new proof π4:

ϕ
Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) `

ϕ
Γ,∀x.(p1(x) ∨ p1(x)), p1(b) `

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) ∨ p1(b) `
∨l

Γ, ∀x.(p1(x) ∨ p1(x)), ∀x.(p1(x) ∨ p1(x)) `
∀l

ϕ continues as:

ϕ′

Γ, ∀x.(p1(x) ∨ p1(x)),` q1
Γ, ∀x.(p1(x) ∨ p1(x)),¬q1 `

¬l

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b),¬q1 `
weak

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) ` p1(b)
init

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b),¬p1(b) `
¬l

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) `
∨l

Complexity of Translations from Resolution to Sequent Calculus 23

ϕ′ is at the point where ∀l is applied to ∀x.p1(x) in π3, which falls under case 2c of

Lemma 3. We perform the transformation getting to:

q1 ∨ ¬p1(a), p1(a) ` q1

Γ, p1(a), p1(b) ` q1
weak

q1 ∨ ¬p1(a), p1(a) ` q1

Γ, p1(a), p1(b) ` q1
weak

Γ, p1(a) ∨ p1(a), p1(b) ` q1
∨l

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) ` q1
∀l

Note that the proofs for the green sequents come from the point of π3 where we

stopped copying the application of rules. Also, since ϕ was used twice, there are four

copies of this sub-proof.

Example 6. We use a clause set Cm that is associated with the complete binary tree

of depth m, as described in (Cook & Reckhow 1974, Urquhart 1995). Cm contains 2m

disjunctions of the form‖

◦p1 ∨ ◦p2± ∨ ◦p3±± ∨ . . . ∨ ◦pm±...±

where ◦ is either empty or ¬ and the i-th ± of pk±...± (with i < k) is either +, if the ◦
preceding pi±...± is empty, or −, if the ◦ preceding pi±...± is ¬. For example††,

C2 = {p1 ∨ p2+,¬p1 ∨ p2−, p1 ∨ ¬p2+,¬p1 ∨ ¬p2−}

For this example, the resolution refutation R we will use is the following (note that it

is actually a tree, since no clause is used more than once):

p1 ∨ p2+ p1 ∨ ¬p2+
p1 ∨ p1

R

p1
F

¬p1 ∨ p2− ¬p1 ∨ ¬p2−
¬p1 ∨ ¬p1

R

¬p1
F

�
R

Let Γ = C2 (since this is a propositional clause set, there is no need to universally close
the clauses). For the sake of comparison, we present the proof TL(R) obtained from the
first translation:

ϕ1

Γ ` p1, p1, p2+
ϕ2

Γ, p2+ ` p1, p1

Γ ` p1, p1
cut

Γ ` p1
cr

ϕ3

Γ, p1, p1 ` p2−
ϕ4

Γ, p1, p1, p2− `
Γ, p1, p1 `

cut

Γ, p1 `
cl

Γ ` cut

‖ Parentheses have been omitted from these disjunctions, and the ∨ connective is assumed to be left-

associative.
†† Note that, in the clause p1∨p2+, the subscript of the second disjunct is +, because the first disjunct is

not negated, whereas in the clause ¬p1 ∨ p2−, the subscript is −, because the first disjunct is negated.

For a clause with m disjuncts, the k-th disjunct (for 0 < k ≤ m) will contain k − 1 subscripted + or
− signs. For example: ¬p1 ∨ p2− ∨ p3−+.

G. Reis, B. Woltzenlogel Paleo 24

Where ϕ1, ϕ2, ϕ3, ϕ4 are:

ϕ1 : ϕ2 :

Γ, p1 ` p1, p1, p2+
init

Γ, p2+ ` p1, p1, p2+
init

Γ ` p1, p1, p2+
∨l

Γ, p2+, p
1 ` p1, p1

init
Γ, p2+ ` p1, p1, p2+

init

Γ, p2+,¬p2+ ` p1, p1
¬l

Γ, p2+ ` p1, p1
∨l

ϕ3 : ϕ4 :

Γ, p1, p1 ` p2−, p1
init

Γ, p1, p1,¬p1 ` p2−
¬l

Γ, p1, p1, p2− ` p2−
init

Γ, p1, p1 ` p2−
∨l

Γ, p1, p1, p2− ` p1
init

Γ, p1, p1, p2−,¬p1 `
¬l

Γ, p1, p1, p2− ` p2−
init

Γ, p1, p1, p2−,¬p2− `
¬l

Γ, p1, p1, p2− `
∨l

We compute now TA(R), according to Definition 12 and following the same idea of

highlighted sequents from the previous example. We begin with the lowermost resolution

step, between p1 and ¬p1 and obtain π0:

p1 ` p1
init

p1,¬p1 `
¬l

Next we choose the negative literal ¬p1 and obtain a proof of p1,¬p1 ∨¬p1 `. We call

this proof π1:

p1,¬p1 ` p1,¬p1 `

p1,¬p1 ∨ ¬p1 `
∨l

We will continue on the factoring of p1 and construct a proof of p1 ∨ p1,¬p1 ∨ ¬p1 `.

The last step consists on case 1b of Lemma 3. We call this proof π2:

p1 ` p1
init

p1 ` p1
init

p1 ∨ p1 ` p1
∨l

p1 ∨ p1,¬p1 `
¬l

p1 ` p1
init

p1 ` p1
init

p1 ∨ p1 ` p1
∨l

p1 ∨ p1,¬p1 `
¬l

p1 ∨ p1,¬p1 ∨ ¬p1 `
∨l

We now process the resolution step resulting in ¬p1 ∨ ¬p1 and construct a proof of

p1 ∨ p1,¬p1 ∨ p2−,¬p1 ∨ ¬p2− `. This is π3:

p1 ∨ p1,¬p1 `

p1 ∨ p1,¬p1,¬p1 ∨ ¬p2− `
weak

p1 ∨ p1,¬p1 `

p1 ∨ p1, p2−,¬p1 `
weak

p1 ∨ p1, p2− ` p2−
init

p1 ∨ p1, p2−,¬p2− `
¬l

p1 ∨ p1, p2−,¬p1 ∨ ¬p2− `
∨l

p1 ∨ p1,¬p1 ∨ p2−,¬p1 ∨ ¬p2− `
∨l

Complexity of Translations from Resolution to Sequent Calculus 25

The last remaining inference is the resolution step resulting in p1 ∨ p1. Using π3 we

construct a proof of p1 ∨ p2+, p1 ∨ ¬p2+,¬p1 ∨ p2−,¬p1 ∨ ¬p2− `, which is the final cut-free

proof. Let Γ = {p1 ∨ p2+, p1 ∨ ¬p2+}. The proof π4 starts by mimicking the inferences of

π3 until p1 ∨ p1 becomes the main formula:

ϕ

Γ ` p1

Γ,¬p1 `
¬l

Γ,¬p1,¬p1 ∨ ¬p2− `
weak

ϕ

Γ ` p1

Γ,¬p1 `
¬l

Γ, p2−,¬p1 `
weak

Γ, p2− ` p2−
init

Γ, p2−,¬p2− `
¬l

Γ, p2−,¬p1 ∨ ¬p2− `
∨l

Γ,¬p1 ∨ p2−,¬p1 ∨ ¬p2− `
∨l

At this point we use the case 2c of Lemma 2 and continue ϕ with (expanding Γ):

p1 ` p1

p1, p1 ∨ ¬p2+ ` p1
weak

p1 ` p1

p2+, p
1 ` p1

weak
p2+ ` p1, p2+

init

p2+,¬p2+ ` p1
¬l

p2+, p
1 ∨ ¬p2+ ` p1

∨l

p1 ∨ p2+, p1 ∨ ¬p2+ ` p1
∨l

The final parts of the proof are obtained from π3 at the highlighted sequents.

5.2. Complexity

This translation gives a cut-free proof, but at a high cost in the worst case.

In Lemma 2, a clause Ci is replaced by its premises Ck and Cj regardless of whether

they are already in the context or not. This is necessary because it might have been

the case that, even if, for example, Ck was already in the context, its quantifiers are

being instantiated by other variables (that is the case with ∀x.p1(x) and its premises on

Example 5). At the end, the end-sequent will contain as many formulas as leaves in a

grounding of the resolution refutation, which has to be a full tree expansion of the DAG,

in the worst case.

Even if the resolution refutation is a tree, an exponential blow up may still occur in

the presence of factoring, as shown in Example 6. This is so because the subproof φ2 is

duplicated in the case of factoring in Lemma 3.

Theorem 7. Let R be a DAG resolution refutation. Then |TA(R)| ∈ Ω(2|R|) in the

worst case.

Proof. To prove this theorem formally, it suffices to exhibit a sequence of proofs Rn

with the desired lengths. Note that the sequence of proofs from Example 1 is such that

|Rn| ∈ O(n) and |TA(Rn)| ∈ Ω(2n), for the reasons discussed above and illustrated in

Example 5. Additionally, note that the sequence of proofs from Example 6 is such that

|Rn| ∈ O(2n) and |TA(Rn)| ∈ Ω(22
n

) (also an exponential blow-up, but of a different

G. Reis, B. Woltzenlogel Paleo 26

kind). We refer the reader to (Woltzenlogel Paleo 2010) for more technical details about

the complexity of the sequence of proofs used in Example 6.

Observe that the worst case lower bound Ω of translation TL is the same as TA.

Nevertheless, it is possible to exhibit an exponential separation between TL and TA for

a particular sequence of proofs.

Theorem 8. There exists a sequence of resolution proofs Rn such that |TL(Rn)| ∈
O(|Rn|) whereas |TA(Rn)| ∈ Ω(2|Rn|).

Proof. Let Rn be the sequence of proofs defined in Example 6. As Rn are already

trees, no duplications occur in the phase when DAGs are expanded to trees, in the first

translation. Therefore, |TL(Rn)| ∈ O(|Rn|). As discussed in the proof of Theorem 7,

|TA(Rn)| ∈ Ω(22
n

) = Ω(2|Rn|).

6. Discussion

In the previous sections, we have surveyed and compared (from a complexity perspective)

three different translations from resolution to sequent calculus. The first one translates

resolution steps to cuts having (the grounding of) the resolved atom as cut-formula. The

second one translates resolution steps to cuts having (a universal closure of) the whole

resolvent as the cut-formula. And, finally, the third one translates resolution steps to

axiom/init inferences having the resolved atom as main formula.

To ease comparison, all three translations were defined here using the same resolu-

tion calculus and the same simple sequent calculus, with neither focusing nor deduction

modulo. This is the first time that the first translation is formally defined. And we hope

that the re-definition of the second and third translations using simpler calculi will make

them more accessible to people working on applications where focusing and deduction

modulo are not essential.

Complexity-wise, the second translation is clearly superior to the other two. It avoids

the expansion and the worst-case exponential blow-up by using universally quantified

cuts. However, it is important to note that a (worst-case exponential) blow-up would

occur if these cuts were eliminated (using Gentzen’s cut-elimination procedure). This is

so because duplications occur whenever a cut inference has to be moved above a sequence

of contractions and universal quantifications. Such sequences occur in the translated

sequent calculus proofs when a resolvent is used more than once in the DAG resolution

refutation.

Nevertheless, the other two translations have their advantages too, which become clear

when we look at the contexts in which they were developed. The first translation was

developed in the context of proof analysis, where there is an interest in extracting Her-

brand sequents (Hetzl et al. 2008, Woltzenlogel Paleo 2008), expansion trees (Miller

2017a, Hetzl et al. 2013) and generate potentially interesting new lemmas (Hetzl et al.

2014). For these goals, a sequent calculus proof without quantified cuts is essential. For

the third translation, the goal was to prove relative soundness of a resolution calculus

with deduction modulo. A soundness proof under the assumption that cut is admissible

Complexity of Translations from Resolution to Sequent Calculus 27

was already known, but cut-admissibility in sequent calculi with deduction modulo is

tricky and depends on the rewrite system. By providing a direct translation to a cut-free

sequent calculus, the third translation strengthened the soundness for the resolution cal-

culus with deduction modulo, making it independent of assumptions about the rewrite

system.

Finally, we hope that the comparison pursued here will shed some additional light on

the debate of whether resolution steps are better seen as cuts or axioms. Two of the

three known translations see resolution steps as cuts, albeit as cuts of crucially different

kinds; the third translation sees resolutions as axioms and, in (Hermant 2010), the view

of resolution steps as cuts is considered to be confusing and misleading.

In our (subjective) view, the first translation is the most straightforward: the resulting

cut preserves as much as possible the local structure of the resolution step (i.e. exploiting

a natural analogy, a resolution with resolved atom p becomes a cut with cut-formula pσ

for some σ and with a context that is (an instantiation of) a super-set of the context

in the resolution step); however, the need for the substitution σ requires expansion of

the DAG and hence breaks the global structure of the proof. The preservation of the

local structure is a strong support for the resolution-as-cut view. On the other hand,

the breaking of the global structure is a clear (although unsurprising) indication that

the analogy between resolution steps and cuts is not perfect. This imperfection is closely

related to Hermant’s observation that resolution is forward-chaining, whereas sequent

calculus is backward-chaining. It is resolution’s forward-chaining nature that naturally

gives rise to non-tree DAG proofs.

The second translation also uses cuts for resolution steps, but in a way that does not

exploit the natural analogy between resolution steps and cuts. The whole sequent calculus

is used more as a meta calculus in this translation, with one premise of the cut storing

information that a whole resolvent is derivable from previously derived clauses and the

other premise continuing the procedure, now with that resolvent added to the derived

clauses. The global structure of the proof is preserved and a shorter polynomially bound

sequent calculus proof is obtained, at the cost of having more complex cut-formulas.

In the third translation, a resolution step resolving a literal in a clause and its dual in

another clause becomes an axiom/init inference connecting these two literals. However,

it is important to note that, in fact, each resolution step may become several axiom/init

inferences. This one-to-many correspondence speaks against the resolution-as-axiom view

(although note that the first translation also suffers this problem to a lesser extent).

Moreover, from a complexity perspective, the third translation may produce proofs that

are exponentially longer than those obtained with the first translation (at least for one

particular sequence of proofs, as shown in Theorem 8), whereas it is not known whether

the converse would be possible (for some other sequence of proofs).

The relative complexities of the translations and the distinct shape of the cut formulas

that they use lead us to conjecture that, for a suitable notion of proof equality, all three

translations are essentially the same but in different stages of cut-elimination. It seems

that: if we start with the second translation and partially eliminate the quantified cuts

until only atomic cuts are left, the resulting sequent calculus proof is essentially the same

as the proof obtained through the first translation; furthermore, if we then eliminate the

G. Reis, B. Woltzenlogel Paleo 28

atomic cuts completely, the result is essentially the same as the proof obtained through

the third translation. In each of the cut-elimination steps (i.e. from quantified cuts to

atomic cuts, and then to no cuts), an exponential blow-up in proof length may occur.

Finding a suitable notion of proof equality is a major challenge for showing this con-

jecture. Take for example a proof resulting from the first translation. Indeed it contains

only atomic cuts, but they occur at the lower part of the proof. But all known reductive

cut-elimination methods push cuts up in the proof and, when used to reduce arbitrary

cuts to atomic cuts, will yield a proof with atomic cuts at the upper part of the proof.

Thus, applying any known reductive cut-elimination procedure to the proofs obtained by

the second translation does not result in proofs that are syntactically equal to the proofs

obtained with the first translation. Therefore, the conjecture would be trivially false if

syntactically equality were taken as the notion of proof equality. For the conjecture to

possibly be true, we would certainly need a more sophisticated notion of proof equality,

taking the permutatibility of inferences into account‡‡. And permutability is only one

of many non-trivial details about proofs that we may need to take into account in a

definition of proof equality to be able to show this conjecture. In principle, we see that

some of the complexity theorems shown here might follow as corollaries from this conjec-

ture. However, given the conjecture’s non-triviality, this alternative route to showing the

complexity theorems would be unnecessarily indirect and more difficult than the route

taken here.

We wonder if, by combining ideas from Examples 5 (exponential blow-up due to DAG

shape of the refutation) and 6 (exponential blow-up due to factoring), a sequence of

refutations could be constructed for which the length of the proofs obtained through the

third translation would be doubly-exponentially longer than the proofs obtained through

the second translation.

We conjecture that the worst-case bounds for the first and second translations (The-

orems 4 and 6) are tight. We are unsure whether the worst-case bounds for the third

translation is tight. If there are resolution proofs of elementary size for sequences of formu-

las that admit only non-elementarily long cut-free sequent calculus proofs (e.g. (Statman

1979, Orevkov 1982)), then a stronger non-elementary worst-case lower-bound for the

third translation should be possible.

Another possible direction for future work is to investigate the complexity of the trans-

lations in the average case, to complement the worst-case analysis presented here. An

average case analysis would require knowledge of the probabilistic distribution of resolu-

tion proofs, which will depend on the proof search method used to generate the resolution

proofs and on the application domain. Different resolution search refinements tend to gen-

erate proofs of certain shapes more frequently than others§§, and the average complexity

‡‡ Notice that focusing provides a notion of equality of proofs modulo some permutation of inferences,

but more pervasive permutations would be needed to equate a proof with atomic cuts in the bottom
and a proof with cuts in the top.

§§ For example, the CDCL proof search method used by sat-solvers generates long tree-like chains of
resolution steps, and only the conclusion of these chains may be used more than once and give rise to

non-tree-like proofs.

Complexity of Translations from Resolution to Sequent Calculus 29

of the translations will depend on how non-tree-like the generated resolution proofs are.

The application domain also matters because problems of certain domains may tend to

have easy solutions with tree-like resolution proofs, whereas in other domains (e.g. com-

binatorial problems) this is not the case. Because of these issues, a theoretical average

case analysis would not only be difficult to pursue, but would also be of limited use in

practice. An experimental average case analysis focusing on problems of a particular do-

main and with proofs generated according to particular search method would be feasible

and useful in helping to decide which translation to choose in these particular cases.

The complexity analysis presented here considered only first-order logic without equal-

ity. Whether our results generalize to the case with equality may depend on how equality

is incorporated into the resolution calculus. For example, some smt-solvers (Bouton et al.

2009) generate resolution proofs where equality is handled simply by having leaf clauses

that are instances of equality axioms. In this case, the complexity results trivially gener-

alize without any change, because these equality clauses are not different from ordinary

clauses from the point of view of the translations. If the resolution calculus incorpo-

rates equality reasoning through a paramodulation rule (of which the superposition rule

used by many modern first-order theorem provers is a special case), then the worst-case

lower bounds proven here still apply, because the sequences of resolution proofs used in

the demonstrations of these lower-bounds are still correct proofs in a resolution calcu-

lus with paramodulation; they just do not use the paramodulation rule. Nevertheless,

one may wonder whether it would be possible to prove higher lower bounds using se-

quences of proofs that do use the paramodulation rule. The first translation has been

defined (Baaz & Leitsch 2011) and implemented (Dunchev et al. 2010, Ebner et al. 2016)

for the resolution calculus with paramodulation and into a sequent calculus extended

with a paramodulation-like equality rule. Because of the direct one-to-one correspon-

dence between paramodulation and these paramodulation-like sequent calculus rules in

the translation, it would not be possible to prove a worse lower-bound for this trans-

lation by using paramodulation rules. We conjecture that, as for the first translation,

with a suitable choice of target sequent calculus, these translations could be extended to

first-order logic with equality without worsening the worst-case complexity lower-bounds.

Acknowledgements: Bruno would like to thank Gilles Dowek for pointing out, back

in 2010, that resolution steps could also be translated as axioms, right after a talk about

cut-introduction by resolution (Woltzenlogel Paleo 2010) given by Bruno at INRIA-Paris

to Gilles Dowek’s research team. Giselle would like to thank Sonia Marin for checking

some of the proofs. The authors would also like to thank Olivier Hermant, Hans de

Nivelle, the anonymous reviewers from PxTP (for useful comments on a shorter version

of this paper), and the anonymous reviewers from MSCS (for the careful and detailed

check and suggestions for improvement).

References

Baaz, M. & Leitsch, A. (2011), Methods of Cut-Elimination, Trends in Logic, Springer.

G. Reis, B. Woltzenlogel Paleo 30

Ben-Sasson, E. & Wigderson, A. (2001), ‘Short Proofs Are Narrow – Resolution Made

Simple’, J. ACM 48(2), 149–169.

Benzmüller, C., Sultana, N., Paulson, L. C. & Theiß, F. (2015), ‘The Higher-Order Prover

Leo-II’, Journal of Automated Reasoning 55(4), 389–404.

Bouton, T., Caminha B. De Oliveira, D., Déharbe, D. & Fontaine, P. (2009), veriT: An

Open, Trustable and Efficient SMT-Solver, in ‘Proceedings of the 22nd International

Conference on Automated Deduction’, CADE-22, Springer-Verlag, pp. 151–156.

Chihani, Z., Miller, D. & Renaud, F. (2017), ‘A semantic framework for proof evidence’,

Journal of Automated Reasoning 59(3), 287–330.

Cook, S. & Reckhow, R. (1974), On the Lengths of Proofs in the Propositional Calcu-

lus (Preliminary Version), in ‘Proceedings of the Sixth Annual ACM Symposium on

Theory of Computing’, STOC ’74, ACM, pp. 135–148.

Degtyarev, A. & Voronkov, A. (2001), The Inverse Method, in J. A. Robinson &

A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Elsevier and MIT Press,

pp. 179–272.

Dunchev, T., Leitsch, A., Libal, T., Weller, D. & Woltzenlogel Paleo, B. (2010), System

Description: The Proof Transformation System CERES, in J. Giesl & R. Hähnle, eds,

‘Automated Reasoning’, Springer, pp. 427–433.

Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S. & Zivota, S. (2016), System

Description: GAPT 2.0, in ‘Proceedings of the 8th International Joint Conference on

Automated Reasoning - Volume 9706’, Springer-Verlag, pp. 293–301.

Gentzen, G. (1969), Investigations into Logical Deductions, in M. E. Szabo, ed., ‘The

Collected Papers of Gerhard Gentzen’, North-Holland, pp. 68–131.

Hermant, O. (2010), ‘Resolution is Cut-Free’, Journal of Automated Reasoning

44(3), 245–276.

Hetzl, S., Leitsch, A., Reis, G. & Weller, D. (2014), ‘Algorithmic introduction of quanti-

fied cuts’, Theoretical Computer Science 549, 1–16.

Hetzl, S., Leitsch, A., Weller, D. & Woltzenlogel Paleo, B. (2008), Herbrand Sequent

Extraction, in ‘Intelligent Computer Mathematics, 9th Int. Conference, AISC, 15th

Symposium, Calculemus, 7th Int. Conference, MKM. Proceedings’, pp. 462–477.

Hetzl, S., Libal, T., Riener, M. & Rukhaia, M. (2013), Understanding Resolution Proofs

through Herbrand’s Theorem, in ‘Automated Reasoning with Analytic Tableaux and

Related Methods: 22nd International Conference, TABLEAUX 2013, Proceedings’,

Springer, pp. 157–171.

Itegulov, D., Slaney, J. & Woltzenlogel Paleo, B. (2017), Scavenger 0.1: A Theorem

Prover Based on Conflict Resolution, in ‘Automated Deduction – CADE 26’, Springer

International Publishing, pp. 344–356.

Korovin, K. (2008), iProver – An Instantiation-Based Theorem Prover for First-Order

Logic (System Description), in ‘Automated Reasoning’, Springer, pp. 292–298.

Kovács, L. & Voronkov, A. (2013), First-Order Theorem Proving and Vampire, in ‘Com-

puter Aided Verification’, Springer, pp. 1–35.

Maslov, S. J. (1964), An inverse method of establishing deducibilities in the classical pred-

icate calculus, Reprinted in Siekmann, Wrightson: Automation of reasoning 1: classical

papers on computational logic 1957-1966, 1983, pp. 17–20.

Complexity of Translations from Resolution to Sequent Calculus 31

McCune, W. (2005–2010), ‘Prover9 and Mace4’, http://www.cs.unm.edu/~mccune/

prover9/.

Miller, D. (2013), Foundational proof certificates: making proof universal and permanent,

in ‘Proceedings of the Eighth ACM SIGPLAN International Workshop on Logical

Frameworks & Meta-languages: Theory & Practice, LFMTP’, pp. 1–2.

Miller, D. (2017a), Expansion Proofs, in B. Woltzenlogel Paleo, ed., ‘Towards an Ency-

clopaedia of Proof Systems’, 1 edn, College Publications, p. 18.

Miller, D. (2017b), Focused LK, in B. Woltzenlogel Paleo, ed., ‘Towards an Encyclopaedia

of Proof Systems’, 1 edn, College Publications, pp. 75–76.

Mints, G. (1990), Gentzen-type systems and resolution rules part I propositional logic,

in P. Martin-Löf & G. Mints, eds, ‘COLOG-88: International Conference on Computer

Logic Tallinn, USSR, December 12–16, 1988 Proceedings’, Springer, pp. 198–231.

Mints, G. (1993), Gentzen-type systems and resolution rule, part II: predicate logic, in

J. Oikkonen & J. Väänänen, eds, ‘Proc. of ASL Summer Meeting, Logic Colloquium

’90, volume 2 of Lecture Notes in Logic’, Springer-Verlag, pp. 163–190.

Orevkov, V. P. (1982), ‘Lower bounds for increasing complexity of derivations after cut

elimination’, Journal of Mathematical Sciences 20(4), 2337–2350.

Reis, G. (2015), Importing SMT and Connection proofs as expansion trees, in ‘Proceed-

ings Fourth Workshop on Proof eXchange for Theorem Proving, PxTP’, pp. 3–10.

Robinson, J. A. (1965), ‘A Machine-Oriented Logic Based on the Resolution Principle’,

Journal of the ACM 12(1), 23–41.

Schulz, S. (2013), System Description: E 1.8, in K. McMillan, A. Middeldorp &

A. Voronkov, eds, ‘Proc. of the 19th LPAR’, Vol. 8312 of LNCS, Springer, pp. 735–743.

Statman, R. (1979), ‘Lower bounds on herbrand’s theorem’, Proceedings of the American

Mathematical Society 75(1), 104–107.

Urquhart, A. (1995), ‘The complexity of propositional proofs’, Bulletin of Symbolic Logic

1(4), 425–467.

Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M. & Wischnewski, P.

(2009), SPASS Version 3.5, in R. A. Schmidt, ed., ‘Automated Deduction – CADE-22’,

Springer, pp. 140–145.

Woltzenlogel Paleo, B. (2008), Herbrand Sequent Extraction [M.Sc. Thesis], VDM-Verlag.

Woltzenlogel Paleo, B. (2010), Atomic Cut Introduction by Resolution: Proof Structuring

and Compression, in ‘Logic for Programming, Artificial Intelligence, and Reasoning -

16th International Conference, LPAR-16, Revised Selected Papers’, pp. 463–480.

http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

	Introduction
	Preliminaries
	Resolution
	Sequent Calculus
	Length measures
	Complexity

	First Translation: Resolutions as Cuts on the Resolved Literal
	Translation
	Complexity

	Second Translation: Resolutions as Cuts on the Resolvent
	Translation
	Complexity

	Third Translation: Resolutions as Axioms
	Translation
	Complexity

	Discussion

