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Abstract. In the past years, linear logic has been successfully used as
a general logical framework for encoding proof systems. Due to linear
logic’s finer control on structural rules, it is possible to match the struc-
tural restrictions specified in the encoded logic with the use of linear logic
connectives. However, some systems that impose more complicated struc-
tural restrictions on its sequents cannot be easily captured in linear logic,
since it only distinguishes two types of formulas: classical and linear. In
this work we intend to use focused linear logic with fixed points and
subexponentials as a logical framework for specifying a variety of proof
systems. In particular, we are interested on specifying multi-conclusion
intuitionistic logics, such as mLJ.

1 Introduction

In the past years [Mil96,Pim01,MP02,MP04,PM05,NM08], linear logic has been
successfully used as a general logical framework for specifying many proof sys-
tems for different logics. It turns out that, in the sequent calculus, a number of
dualities appear directly. For example, the occurrences of a formula on the left or
right of a sequent arrow are, in some sense, “dual” occurrences of that formula.
The cut and initial inference rules are “dual” inference rules. The introduction
rules for a logical connective on the left and right of a sequent arrow generally
have dual behaviors, at least if one wants to be able to eliminate both non-atomic
cuts and non-atomic initial rules. Using linear logic as a logical framework makes
it possible to use its involutive negation to directly capture such dualities of the
encoded sequent system and reasoning about them.

On the other hand, when designing a proof system, the structural restrictions
imposed to its sequents, usually through structural rules, play a role as important
as the logical rules themselves. Already in the first sequent calculus systems
designed by Gentzen [Gen69], the system, LJ, for intuitionistic logic differed from

* This work wouldn’t be possible without Dale Miller’s advices and the support of
CNPq and FAPEMIG.



the system for classical logic, LK, by restricting in former system the right-hand-
side of sequents to contain at most one formula. Since then, several other proof
systems have been proposed, which differ more on these structural restrictions
than on their logical rules.

Differently from classical logic, in linear logic the structural rules of weakening
and contraction are not allowed to be used on any formula, but only those marked
with the so-called exponentials (7,!). In this way, it is possible to distinguish
between two different kinds of formulas: linear formulas to which no structural
rule is applicable (that is, they cannot be erased nor copied) and unbounded
formulas to which it is allowed to apply structural rules. This distinction is
normally reflected on syntax by using sequents of the form - @ : I' containing
two contexts [And92]: © contains only unbounded formulas and behaves as a set
of formulas, while I" contains only linear formulas and behaves as a multiset of
formulas.

One can, therefore, capitalize on this different treatment of formulas to spec-
ify proof systems, such as LK and LJ, whose sequents have at most two different
contexts, of which one context can be treated as a multiset and another context
be treated as a set of formulas.

It does not seem possible, however, to specify proof systems that impose
structural restrictions to its sequents which require more than one context to be
treated as either a set or a multiset of formulas. For instance, the sequents in
Maehara’s mLJ system [Maeb4] requires that both the left and the right-hand-
side of sequents have to be treated as two distinct sets of formulas. Focused proof
systems are other examples of proof systems that impose structural restrictions
that require more than one context. Besides contexts to store the formulas ap-
pearing on the left and right-hand-side of sequents, one needs an extra context
to keep track of the formula being focused on.

It turns out that the linear logic exponentials are not canonical [DJS93].
In fact, it is possible to construct linear logic proof systems with as many
exponential-like operators (7%,1%), called subexponentials [NMO09], as needed.
These operators may or may not allow for contraction and/or weakening and
are organized in a pre-order that specifies the entailment relation among formu-
las marked with these operators. Subexponentials, therefore, allows the design of
proof systems whose sequents have as many contexts as needed and any of them
can be treated as multisets or sets. As this paper shows, the use of subexponen-
tials greatly enhance the proof system’s expressiveness allowing the capture of
more proof systems.

We propose the use of focused linear logic with subexponentials proof system,
called SELLF [NM09], to encode such proof systems that impose more compli-
cated structural restrictions to its sequents. More specifically, we show how to
encode the systems GIm, mLJ and LJQ* in SELLF.

Up to this point, we have described how linear logic with subexponentials is
suitable for specifying a broad of logical systems. One could ask, on the other
hand, if a given linear logic formula is the specification of any sequent calculus
system. It turns out that it is possible to classify linear logic formulas in such a



way to determine precisely if it corresponds to any possible object level inference
rule.

This paper is organized as follows: Section 2 introduces the system SELLF,
focused linear logic with subexponentials; Section 3 shows the examples of spec-
ifications using SELLF'; Section 4 shows some more connections between object
and meta-level logics and, finally, in Section 5 we conclude by giving some di-
rections for future work.

2 Linear logic with subexponentials

Although we assume that the reader is familiar with linear logic, we review some
of its basic proof theory. Literals are either atomic formulas or their negations.
The connectives ® and * and their units 1 and L are multiplicative; the con-
nectives @ and & and their units 0 and T are additive connectives; V and 3
are (first-order) quantifiers; and ! and ? are the exponentials. We shall assume
that all formulas are in negation normal form, meaning that all negations have
atomic scope.

Due to the exponentials, one can distinguish in linear logic two kinds of for-
mulas: the linear ones whose main connective is not a ? and the unbounded ones
whose main connective is a 7. The linear formulas can be seen as resources that
can only be used once, while the unbounded formulas as unlimited resources
which can be used as many times necessary. This distinction is usually reflected
in syntax by using two different contexts in linear logic sequents (- © : I') one
(©) containing only unbounded formulas and another (I') only linear formulas
[And92]. Such distinction allows to incorporate structural rules, i.e., weakening
and contraction, into the introduction rules of connectives, as done in similar
presentations for classical logic, e.g., the G3c system in [TS96]. In such presen-
tation, the context (@) containing unbounded formulas is treated as a set of
formulas, while the other context (I') containing only linear formulas is treated
as a multiset of formulas.

It turns out that the exponentials are not canonical [DJS93]. In fact, if, for any
reason, we decide to define a blue and red conjunctions (A? and A" respectively)
with the standard classical rules:

[FAA T'HAB | rABEA
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then it is easy to show that, for any formulas A and B, AA* B = A A" B. This
means that the classical conjunction is canonical. However, the same behavior
does not hold with the linear logic modals. In fact, suppose we have red !",?"
and blue !°, ?° sets of exponentials with the standard linear logic rules:
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We cannot show " F' = 1° F nor ?"F = ?°F. This opens the possibility of defining
classes of exponentials, the subexponentials [NM09]. In this way, it is possible to
build proof systems containing as many exponential-like operators, (!l, ?1) as one
needs: they may or may not allow contraction and weakening, and are organized
in a pre-order (=) specifying the entailment relation between these operators.
Formally, a proof system for linear logic with subexponentials, called SELLy;, is
specified by using a subexponential signature of the form (I, <, W, C), where I is
the set of labels for subexponentials, < is a preorder relation among the elements
of I, and both W and C are subsets of I, specifying which subexponentials allow
for, respectively, weakening and contraction. We will require the preorder < to
be upwardly closed with respect to the sets WW and C, that is, if z < y and x € W
(x € C), then y € W (y € C). SELLy contains the same introduction rules as in
linear logic for all connectives, except the exponentials. These are specified, on
the other hand, by the subexponential signature, X, as follows:!

-C, A
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W,if ze W
That is, dereliction can be applied to any subexponential, and contraction (re-
spectively, weakening) only to subexponentials that appear in the set C (respec-
tively, W). In this paper, we will assume that C = W. The promotion rule is
given by the following inference rule:

ECL. 0O
2N, RO, PO

where a = z; for all = 1,...,n. The promotion rule will play an important role
here, namely, to specify the structural restrictions of encoded proof systems. In
particular, one can use a subexponential bang, !°, to check whether there are
only some type of formulas in the context, namely, those that are marked with
subexponentials, ?*, such that ¢ < x. If there is any formula ?¥ F' in the context
such that ¢ £ y, then ! cannot be introduced.

As we show in this paper, the use of subexponentials greatly increases the
expressiveness of linear logic by no longer limiting one to use only two contexts,
but as many as one needs, namely, one context for each subexponential. More-
over, since one can specify to which subexponentials one is allowed to copy or
erase formulas, these contexts can either be treated as multisets or sets of for-
mulas. This will allow us to encode in SELL a vast number of proof systems that
do not seem possible to be encoded in plain linear logic.

2.1 Focusing

First proposed by Andreoli [And92] for plain linear logic, focused proof systems
provide the normal form proofs for cut-free proofs. In this section, we review the
focused proof system for SELL, called SELLF, proposed in [NMO09].

! Whenever it is clear from the context, we will elide the subexponential signature X.



In order to introduce SELLF, we first recall some more terminology. We
classify as positive the formulas whose main connective is either ®,®, 3, the
subexponential bang, the unit 1 and positive literals. All other formulas are
classified as negative. Figure 1 contains the focused proof system SELLF that
is a rather straightforward generalization of Andreoli’s original system. There
are two kinds of arrows in this proof system. Sequents with the | belong to
the positive phase and introduce the logical connective of the “focused” formula
(the one to the right of the arrow): building proofs of such sequents may require
non-invertible proof steps to be taken. Sequents with the {} belong to the neg-
ative phase and decompose the formulas on their right in such a way that only
invertible inference rules are applied. The structural rules Dy, D;, R {, and R |}
make the transition between a negative and a positive phase.

Similarly as in the usual presentation of linear logic, there is a pair of contexts
to the left of I} and | of sequents, written here as K : I'. The second context, I,
collects the formulas whose main connective is not a question-mark, behaving
as the bounded context in linear logic. But differently from linear logic, where
the first context is a multiset of formulas whose main connective is a question-
mark, we generalize C to be an indexed context, which is a mapping from each
index in the set I (for some given and fixed subexponential signature) to a finite
multiset of formulas, in order to accommodate for more than one subexponential
in SELLF. In Andreoli’s focused system for linear logic, the index set contains
just oo and K[wo] contains the set of unbounded formulas. Figure 2 contains
different operations used in such indexed contexts. For example, the operation
(K1®K3), used in the tensor rule, specifies the resulting indexed context obtained
by merging two contexts K7 and Cs.

Focusing allows the composition of a collection of inference rules of the same
polarity into a “macro-rule”. Consider, for example, a formula N; & Ny & N3,
where all N1, Ny, and N3 are negative formulas. Once focused on, the only way
to introduce such a formula is by using one a “macro-rule” of the form:

FIC: T N;
FIC: T N1 ® Ny ® N3

where i € {1,2,3}. There is no other alternative. For another example, the back-
chaining and forward-chaining rules in logic programming can also be explained
in such a way [LMO09]. Here, we will encode proof systems in SELLF in such a
way that the “macro-rules” available using our specifications match exactly the
inference rules of the encoded system. This is the strongest level of adequacy
possible as described in [NMOS].

In this paper, we will make great use of the promotion rule, !, in order
to specify the structural restrictions of a proof system. In particular, this rule
determines two different operations when seeing this introduction rule from the
conclusion to premise. The first one arises by its side condition: a bang can be
introduced only if the linear contexts that are not greater to I are all empty.
This operation is similar to the promotion rule in plain linear logic: a bang can
be introduced only if the linear context is empty. Nigam and Miller exploited
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Fig. 1. Focused linear logic system with subexponentials. Is is assumed that: C C W;
L is a list of formulas, I" is a multi-set of formulas and positive literals, A, is a positive
polarity literal, P is a non-negative literal, S is a positive literal or formula and N is
a negative formula.

(o wma = {2l e o KIS) = UIKEH | i € S}

1 [i] ifiecnw

o= L] Crvise cesi={p" i3

o (K1 %K2) |s is true if and only if (K1 [j] x K2[j])

Fig. 2. Specification of operations on contexts. Here, i € I, j € S, § C I, and the
binary connective x € {=, C, C}.



this in [NMO8] to encode LJ in Andreoli’s focused system for linear logic. The
second operation is specified by using the operation K <;: in the premise of the
promotion rule all unbounded contexts that are not greater than I are erased.
Notice that such operation is not available in plain linear logic.

Finally, to improve readability, we will often show explicitly the formulas
appearing in the image of the indexed context, IC, of a sequent. For example,
if the set of subexponential indexes is {x1,...,2n}, then the following negative
sequent

}_91 ‘xl @2 ‘2 Qn anﬂL

denotes the SELLF sequent - IC : I' { L, such that Klzi] = ©; for all 1 <
1 < n. We will also assume the existence of a maximal subexponential called o
for which contraction and weakening are allowed and which is greater than all
other subexponentials. This subexponential is used to store linear logic theories
specifying proof systems.

3 Encoding proof systems

Similar as in Church’s simple type theory [Chud0], we assume that linear logic
propositions have type o and that the linear logic quantifiers have type (term —
form) — o, where term and form are respectively the types for an object-logic
term and for object-logic formulas. Moreover, following [PM05,Pim01,NMO08§],
we encode a sequent in SELLF by using two meta-level atoms [-| and [-] of
type form — o. They denote respectively an object logic formula appearing
on the left and on the right-hand-side of a sequent. For example, the sequent
By,...,B, F Ci,...,C), could be encoded by the SELLF sequent - @ :
|B1], -, | Bn] 1 [C1],-+ , [Cm] i - At -, where © encodes the proof system’s
introduction rules. Notice that in SELLF we can configure the contexts for the
subexponentials I (for left) and r (for right) to either behave like sets or multisets
by changing the subexponential signature accordingly. For instance, if we use the
subexponentials signature ({I,7, oo}, <, {l, 00}, {l, 00 }), with some preorder =<, the
contexts I and « are treated as sets, while the context r is treated as a multiset.
Such situation would be useful for any proof systems where the right-hand-side
of its sequent behaves as a multiset of formulas and the left-hand-side behaves
as a set of formulas. Finally, for convenience, if I" is a (multi)set of object-logic
formulas, then | I'| (respectively, [I']) denotes the (multi)set of meta-level atoms
{|F]| F e |I'|} (respectively, {[F] | F € [I']}).

3.1 Glm

The first logic that we encode in SELLF is the proof system for minimal logic
called Glm [TS96], where the rules for contraction and weakening are explicit
rules in the system and all introduction rules are multiplicative.? The rules of

2 The exchange rule is still implicitly incorporated in a sequent by assuming its context
to be multiset of formulas and not lists. The system G1m used here is called context-
independent rules in [TS96, Remark 3.1.5].



this system are depicted in Figure 3. There both the left and right-hand-side of
sequents are treated as two distinct multisets of formulas. This is particularly
relevant for the rules D and Cut since the formula C on the right-hand-side of
their conclusion sequents needs to be moved necessarily to the right premise.

Consequently, in SELLF', we will require two subexponentials, I and r, that
do not allow neither contraction nor weakening to store, respectively, object-logic
formulas appearing on the left and on the right of the sequent. Moreover, we use
the theory L, depicted in Figure 4 to specify in SELLF the G1lm’s introduction
rules. This theory is, on the other hand, stored in the subexponential « that is
greater than both I and r and since an introduction rule can be used in an object-
logic proof as many times needed, « is allowed to both contract and weaken.
This can be summarized by the subexponential signature ({co, 1,1}, {I < oo, <
o}, {oo}s foo})-

Intuitively, each clause in Lgp, specifies an introduction rule of Glm. To
obtain such strong correspondence between focused proofs obtained from Lgpm,
we need to capture precisely the structural restrictions in the system. In par-
ticular, the use of the 1" in the clauses (D1), specifying the rule Dy, and Ids,
specifying Cut rules, is necessary. It forces that the side-formula, C, appearing
in the right-hand-side of their conclusion is moved to the correct premise. This
is illustrated by the following derivation:

b Lamm oo |I0] 1[A] G- 1 1 b Lam oo | T2, A 1[CT i 4 1
oo Ry,?

b Lam o |1 1-5- V27 [A] b Lam o [T2) 1[C] iU ?'[A] o
b Lam co |1, o] 1[C] i 41177 [A]l @ 7| A
b Lamm oo |10, 1) 1[C -1

Do, 3

When introducing the tensor, the formula [C'] cannot go to the left branch since,

in that case, the ! could not be introduced: in order to introduce this connective

the r context must be empty. Therefore, the only way to introduce the formula

Id; is with a derivation such as the one above. Notice that such specification

would not be possible in plain linear logic because, there, only one context can

be treated as a multiset, while in G1m, one requires two such contexts.
Formally, the following was proved in [Nig09].

Proposition 1. Let I" U {C} be a set of object logic formulas, and let the
subexponentials, 1 and r, be specified by the signature ({co,l,1},{l < oo, <
oo}, {oo}, {oo}). Then the sequent - Lamm s || 1[CT i -4 is provable in SELLF
if and only if the sequent I' = C is provable in GIm.

3.2 mLJ

We now encode in SELLF the multi-conclusion intuitionistic sequent calculus
mLJ, whose rules appear in Figure 5. In order to specify mLJ, two different
contexts are also required, but differently from Glm, they need to be treated
as sets of formulas. This restriction is a result of the right introduction rules
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Fig. 3. The sequent calculus system GIm for minimal logic. Here, I, I'> are multisets
of formulas and C is a formula; in the rules 3L and VR, the eigenvariable ¢ does not
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Fig. 4. The theory, Lam, for GIm.

for implications and universal quantifiers. In these rules, all the side-formulas
appearing in the right-hand-side of the conclusion sequent have to be erased
in the premise, while the side-formulas appearing in the left-hand-side remain

untouched.

The theory L., in Figure 6 specifies mLJ in SELLF. As before, we make use
of two subexponentials | and r to store, respectively, meta-level atoms |-| and
[], but now we allow both contraction and weakening to these subexponential
indexes. That is, we use the subexponential signature ({oo,l,r};{l =< oo, =<
oo} {00, 1, r}; {00, 1, r}). The use of ! in the clauses (D,) and (Vg) enforces that
the formulas in the context r are erased when these formulas are introduced, as

illustrates the following derivation introducing the formula (Vg):

',

Logj oo | I'] 1 [Ac] i+ 1

FLm

oo |11k Va? [Az]

v, 7

b Loy oo [ I'] 1 [A Yz A] i+ ) [V AT
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Fig. 5. The multi-conclusion intuitionistic sequent calculus, mLJ, with additive rules.

(>1) [ADBJF@([A1&?|A]) (Or) fADBV®”(‘7’LAJ B [ B])
(N) [AABIR e (MAlR Y B]) (Ar) [AAB]E @ (7'[A] & ?'[B])
(Vi) [AVB]t o (MAl&?B]) (V.) [AVB]*®(7[A]® 7 [B])
(Vz) |VB|* ®?'|Bz] (Vr) [VB]* ® !"V&?"[Bx]

(31) |3BJ|* ®@Vz?'| Bz (3r) [3B]* ® 7"[Bx]
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(Id) |BJ*®[B]* (Id) 7'|B|® 7B

Fig. 6. The theory, L., for the multi-conclusion intuitionistic logic system mLJ.

In particular, since I £ r, all formulas should be erased in the context r in the
premise of the promotion rule. The derivation above also illustrates how one
can specify fresh values with the use of the universal quantifier. As in mLJ, the
eigenvariable ¢ cannot appear in A nor I

The following result is proved by induction on the height of focused proofs [Nig09].

Proposition 2. Let I'UA be a set of object-logic formulas, and let the subexpo-
nentials 1 and r be specified by the signature ({oo, 1, 1};{l = 00,1 X oo}; {oc, I, r};
{00, 1, 1}). Then the sequent - Ly oo [I'| 1 [A] i - is provable in SELLF if
and only if the sequent I' = A is provable in mLJ.

3.3 LJQ*

The systems in the previous sections always required two contexts, that were
treated either as multisets or as sets. There are systems, however, that require
more than two contexts to be specified, such as the focused multi-conclusion
system for intuitionistic logic LJQ* depicted in Figure 7. This system is a variant
of the system proposed by Herbelin [Her95, page 78] and was used by Dyckhoff
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Fig. 7. The focused multi-conclusion system for intuitionistic logic - LJQ".
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Fig. 8. The theory Lj;q used to encode the system LJQ".

& Lengrand in [DLO06]. LJQ* has two types of sequents: unfocused sequents of
the form I' = A and focused sequents of the form I" — A; A where the formula
A, in the stoup, is focused on. Proofs are restricted as follows: the logical right
introduction rules introduce only focused sequents, while the left introduction
rules introduce only unfocused sequents.

We use the theory Ljj, depicted in Figure 8 to specify the system LJQ* in
SELLF'. Besides the subexponential so, we make use of three subexponentials:
the first two, I and r, are as before, used to encode, respectively, the left and
the right-hand-side of object-logic sequents, while the third subexponential, f,
is new and used to encode the stoup of object-logic focused sequents. Formally,
they are specified by the signature ({f,1,r,co}{r <1 < oo};{l,r,00};{l,1,0}).
Notice that, differently from the previous encoding, the subexponentials r, and
I are related in the pre-order and moreover contraction and weakening are not
available only to f. As before, the restrictions to sequents imposed by the focusing
discipline are encoded implicitly by the use of subexponentials. One is able to
correctly specify the restrictions that positive rules can only be applied to the
focused formula and that negative rules can only be applied when the stoup is
empty.

To illustrate the fact that negative rules are only applicable when the stoup
is empty, consider the following derivation introducing the clause (Ar):

F Ll | I, AB]i[ATF-: -1
I K K !T,?,ZX{?I
FKUy|AAB]*t F L1 |5 [AT£-:- Y172 A] » 7| B))
FLjgi [T i[AT - U [AAB]= @ (7' A] 2 ?'|B))
F Ly i | i[AT -1

Doo,2 x 3



where K is an abbreviation for the context Ly, s [I”] 1 [A] i - -, and I”
is the set I' U {A A B}. Since r £ f, the context f must be empty in order to
introduce the !" in the right branch. On the other hand, since r < I, the I context
is left untouched in the premise of this derivation, thus specifying precisely the
A, introduction rule.
As expected, each clause in Lj;, specifies precisely an inference rule in LJQ* [Nig09]:

Proposition 3. Let I' U A U {C} be a set of object logic formulas, and let
the subexponentials 1, v and f be specified by the signature ({f,I,r,co}{r < 1<
oobi{l,r,00}; {1, 1,00}). Then the sequent = Ljjq 1] i [A] £ -4 is provable in
SELLF if and only if the sequent I' = A is provable in LJQ*.

3.4 Implementation of linear logic with subexponentials

The system depicted in Figure 1 and all examples of encodings listed in this
paper were implemented using A-Prolog. In this scenario, focused linear logic
with subexponentials is the object-level logic and a fragment of the intuition-
istic logic is the meta-level logic. Most of the inference rules of Figure 1 have
a straightforward specification in A-Prolog, differing only in the context man-
agement. The difference between aditive and multiplicative operators, and the
presence of subexponentials are all related to context control. The source code
is available at http://kontesti.me/~giselle/SELLF/.

4 Relating Meta-level Formulas and Object-level Rules

So far, we have shown how to use linear logic in order to encode logical systems,
and how subexponentials can enhance dramatically the amount of systems that
can be encoded. On the other hand, it is natural to ask whenever a linear logic
formula corresponds to a specification of an inference rule.

In [CGTO8], Agata et al introduced a systematic procedure to relate large
classes of linear logic formulas into equivalent structural inference rules in se-
quent and hypersequent calculi. In that work, the classes N; and P; are defined
so that N C N1, N; C Pit1, Pi C Pig1, Pi C Nip1 and P; is built using pos-
itive connectives, while N; is built using negative ones. Although the definition
is over intuitionistic linear logic without exponentials, it is straightforward to
extend these classes to the whole linear logic.

Definition 1. A monopole formula is a linear logic formula that contains only
occurrences of the asynchronous connectives, namely s, &, L, T,V together with
the modal 7, which can only have atomic scope. A bipolar is a formula in which
no synchronous connective is in the scope of an asynchronous connective and
where 7 has atomic scope.

Hence monopoles are in N7 while bipolars are in Ps, both with the restriction
that ? must have atomic scope.

In [CGTO08] there are two main results concerning this classification: 1) every
axiom in N> is equivalent to a finite set of structural rules; 2) every axiom in



P3 is equivalent to a finite set of hyperstructural rules. It turns out that, in our
approach, we can completely characterize formulas in P5. In fact, since bipolars
define synthetic connectives, every one of these formulas determines a sequent
calculus inference rule, trivially. For example, the linear logic formula A®(B&C)
determines a macro-rule:

FK,‘1:F1UA F’CthQTTB FKQZFQﬂ‘C
}_IC1®K:2F1,F2@A®(B&C)

In order to relate this to object level logics, we introduce the concept of intro-
duction clauses.

Definition 2. Let Q be a fized set of unary meta-level predicates. An introduc-
tion clause is a closed formula of the form

V.. VY [g(o(@, ..., x0))" @ B)

where ¢ is an object-level connective of arity n (n > 0), ¢ € Q and B is a
bipolar. Furthermore, an atom occurring in B is either of the form p(x;) or
p(z;(y)) where p is a meta-level predicate and 1 < i < n. In the first case, z;
has a type of order 0 while in the second case x; has a type of order 1 and y is a
variable quantified (universally or existentially) in B (in particular, y is not in

{.Tl,.. ,an})

The next result (proved by a straightforward case analysis on the structure
of bipolar formulas) states that introduction clauses naturally yield object-level
inference rules.

Proposition 4. Fuvery introduction clause (hence in Pg) corresponds to a spec-
ification of a sequent calculus introduction rule.

There are some interesting questions related to this subject. It is not clear,
for example, how to use linear logic in order to model hypersequents (hence we
do not know how to deal with the class P3). For the class NV;,i > 3, we have the
following result.

Theorem 1. There exist introduction clauses in N, i > 3 which does not cor-
respond to any specification of object level inference rules.

Proof. The following proves the above theorem for n = 3 and, since N; C N
for i < j, the result comes. Consider the following introduction clauses with
non-bipolar bodies:?

[o(4, B,O)]" @ ([A] & ([B1® [C)))  [o(4,B,C)]" @ (lA] © (LB ® [C]))

If they are to correspond to the encoding of sequent inference rules, the natural
candidates would be

Ik AL, Ay, A TWALB IhF Ay C IAF A IB,C+ A

F17F2}_A1,A27<>(A7B7C) F,O(A,B,C)"A F,Q(A,B,C)"A

3 Note that these clauses are in N3 since they are equivalent to the formulas

[o(A, B,C)] o= ([A] & ([B] @ [C1)) and [o(A, B,C)] o= ([A] @ ([B] & [C])).



(= L) |A= B]* ®[A] & |B]. (= R) [A= B]* ®|A]»®[B].

(AL)  |AABJ*t ®|A] % |B). (AR) [AAB]* ®[A] & [B].
(VR) [Av B]* ®[A] % [B]. (VL) |AV B|* ®|A] & |BJ.
(feL) Lfe)t @T.

Fig. 9. Specification of G3c.

As it turns out, at the meta level the sequent

F (Id)* - [Al & ([B] ® [C)), |A] @ (|B] »® [C]) is provable, while at
at the object level, the two sequent rules listed above cannot be used to prove
o(A,B,C) F o(A, B,C). This sequent can be proved only with an immediate
application of the initial axiom. Thus, the meta-level encoding of the object-
level inference rules is not adequate in this non-bipolar example.

4.1 Invertibility of rules

Another property that has been studied in the sequent calculus setting is the
invertibility of rules. We say that a rule is invertible if the provability of the
conclusion sequent implies the provability of all the premises.

This property is very much of interest to proof search since invertible rules
permute down with the other rules of a proof, reducing the non-determinism.
In particular, in systems with only invertible rules, the bottom-up search for a
proof can stop as soon as a non provable sequent is reached.

For example, it is well known that all rules in G3c (see [T'S96]) are invertible.
This system is specified in Figure 9. Observe that the meta level connectives in
the bodies are asynchronous. In general, the following is a straightforward result.

Theorem 2. An monopole introduction clause corresponds to an invertible ob-
ject level rule.

5 Conclusion and Future Work

We have introduced the logical framework SELLF, and showed how to specify
different logical systems. Also, we addressed the problem of characterizing linear
logic formulas as inference rules, as well as invertible rules.

There are several ways of continuing this work. In fact, in [MP02], a necessary
condition was presented in order to guarantee that specified systems had the
cut-elimination property. The result was based on the fact that cut elimination
is often proved via case analysis, where the duality of inference rules play an
important role in the elimination of non-atomic cuts. This is translated to the
meta-level by “dual” linear logic formulas. It would be interesting to extend this
result to linear logic with subexponentials, since, in most of the systems specified
in this paper, the proof of cut-elimination at the meta-level is really hard.

Another direction to pursue would be the relation between multifocusing with
exponentials and parallel computing. In this way, extend the concept that proof
search corresponds to sequential algorithms, as stated in [Nig09].
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