
Submitted to:
PxTP 2015

c© Giselle Reis
This work is licensed under the
Creative Commons Attribution License.

Importing SMT and Connection proofs as expansion trees

Giselle Reis
INRIA-Saclay, France

giselle.reis@inria.fr

Different automated theorem provers reason in various deductive systems and, thus, produce proof
objects which are in general not compatible. To understand and analyze these objects, one needs
to study the corresponding proof theory, and then study the language used to represent proofs, on a
prover by prover basis. In this work we present an implementation that takes SMT and Connection
proof objects from two different provers and imports them both as expansion trees. By representing
the proofs in the same framework, all the algorithms and tools available for expansion trees (com-
pression, visualization, sequent calculus proof construction, proof checking, etc.) can be employed
uniformly. The expansion proofs can also be used as a validation tool for the proof objects produced.

1 Introduction
The field of proof theory has evolved in such a way to create the most various proof abstractions. Natural
deduction, sequent calculus, resolution, tableaux, SAT, are only a few of them, and even within the same
formalism there might be many variations. As a result, automated theorem provers will generate different
proof objects, usually corresponding to their internal proof representation. The use of distinct formats
has some disadvantages: provers cannot recognize each others proofs; proofs cannot be easily compared;
all analysis and algorithms need to be developed on a prover by prover basis.

GAPT is a framework for proof theory that is able to represent, process and visualize proofs. Cur-
rently it implements the sequent calculus LK (with or without equality rules) for first and higher or-
der classical logic, Robinson’s resolution calculus [11], the schematic calculus LKS [4] and expansion
trees [8]. GAPT also provides algorithms for translating proofs between some of these formats, for
cut-elimination (reductive methods à la Gentzen [5] and CERES [2]), and for cut-introduction (proof
compression) [6], as well as an interactive proof visualization tool [3]. But all these tools depend on
having proofs to operate on.

In this work we show how to parse and translate SMT and Connection proofs from veriT and lean-
CoP, respectively, into expansion proofs in GAPT. SMT are unsatisfiability proofs with respect to some
theory and, in veriT, these are represented by resolution refutations of a set including (instances of) the
axioms of the theory considered and the negation of the input formula. Connection proofs decide first-
order logic formulas by connecting literals of opposite polarity in the clausal normal form of the input.
These different conceptions of proofs will be unified under the form of expansion proofs, which can be
considered a compact representation of sequent calculus proofs.

The advantages of this work is three-fold. First of all, the use of expansion proofs provides a compact
representation for otherwise big and hard to grasp proof objects. Using this representation and GAPT’s
visualization tool, it is easy to see the theorem that was proved and the instances of quantified formulas
used. Second of all, the use of a common representation facilitates the comparison of proofs and makes
it possible to run and analyse algorithms developed for this representation without the need to adapt
it to different formats. In particular, we have been using the imported proofs for experimenting proof
compression via introduction of cuts [6]. Finally, it provides a simple sanity-check procedure and the
possibility of building LK proofs.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Importing SMT and Connection proofs as expansion trees

This paper is organized as follows. Section 2 defines basic concepts and extends the usual definition
of expansion trees to accommodate polarities. Section 3 explains how to extract the necessary informa-
tion from both formats and how it is then used to build expansion trees. Section 4 presents the results
of the transformation applied to a database of proofs in the considered formats. It also discusses the
advantages of having the proofs as expansion trees. Section 5 discusses some related work and, finally,
Section 6 concludes the paper pointing to future work.

2 Expansion proofs
We will work in the setting of first-order classical logic. We introduce now a few basic concepts.

Definition 1 (Polarity in a sequent). Let S=A1, ...,An `B1, ...,Bm be a sequent. We will say that formulas
on the left side of `, i.e, A1, ...,An have negative polarity while formulas on the right, i.e., B1, ...,Bm have
positive polarity.

Definition 2 (Polarity). Let F be a formula and F ′ a sub-formula of F. Then we can define the polarity
of F ′ in F, i.e., F ′ can be positive or negative in F, according to the following criteria:

• If F ≡ F ′, then F ′ has the same polarity as F.

• If F ≡ A∧B or F ≡ A∨B or F ≡ ∀x.A or F ≡ ∃x.A and F is positive (negative), than A and B are
positive (negative).

• If F ≡ A→ B and F is positive (negative), then A is negative (positive) and B is positive (negative).

• If F ≡ ¬A and ′ is positive (negative) then A is negative (positive).

Throughout this document we will use 0 for negative polarity, 1 for positive polarity and p to denote
the opposite polarity of p, for p ∈ {0,1}.
Definition 3 (Strong and weak quantifiers). Let F be a formula. If ∀x occurs positively (negatively) in
F, then ∀x is called a strong (weak) quantifier. If ∃x occurs positively (negatively) in F, then ∃x is called
a weak (strong) quantifier.

Strong quantifiers in a sequent will be those introduced by the inferences ∀r and ∃l in a sequent
calculus proof.

Expansion proofs are a compact representation for first and higher order sequent calculus proofs.
They can be seen as a generalization of Gentzen’s mid-sequent theorem to formulas which are not nec-
essarily prenex [8]. Expansion proofs are composed by expansion trees. An expansion tree of a formula
F has this formula as its root. Leaves are atoms occurring in F and inner nodes are connectives or a
quantified sub-formula of F . The edges from quantified nodes to its children are labelled with terms that
were used to instantiate the outer-most quantifier. We extend the original definition with the notion of
formula polarity and use Π and Λ for strong and weak quantifiers respectively in expansion trees.

Definition 4 (Expansion tree). Expansion trees and a function Sh(E, p) (for shallow), that maps an
expansion tree E to a formula with polarity p ∈ {0,1}, are defined inductively as follows:

• If A is an atom, then A is an expansion tree with top node A and Sh(A, p) = A for any choice of p.

• If E0 is an expansion tree, then E = ¬E0 is an expansion tree with Sh(E, p) = ¬Sh(E0, p).

• If E1 and E2 are expansion trees and ◦ ∈ {∧,∨}, then E = E1 ◦ E2 is an expansion tree with
Sh(E, p) = Sh(E1, p)◦Sh(E2, p).

• If E1 and E2 are expansion trees, then E =E1→E2 is an expansion tree with Sh(E, p)=Sh(E1, p)→
Sh(E2, p).



Giselle Reis 3

• If {t1, ..., tn} is a set of terms and E1, ...,En are expansion trees with Sh(Ei, p) = A[x/ti], then E =
Λx.A+t1 E1...+

tn En (denoting a node with n children) is an expansion tree with Sh(E,0) = ∀x.A
and Sh(E,1) = ∃x.A.

• If E0 is an expansion tree with Sh(E0, p) = A[x/α] for an Eigenvariable α , then E = Πx.A+α E0
is an expansion tree with Sh(E,0) = ∃x.A and Sh(E,1) = ∀x.A.

Expansion trees can be mapped to a quantifier free formula via the deep function, which we also
redefine taking the polarities into account.

Definition 5. We define the function Dp(·, p) (for deep), p ∈ {0,1}, that maps an expansion tree to a
quantifier free formula of polarity p as:

• Dp(A, p) = A for an atom A.

• Dp(¬A, p) = ¬Dp(A, p)

• Dp(A ◦ B, p) = Dp(A, p) ◦Dp(B, p) for ◦ ∈
{∧,∨}

• Dp(A→ B, p) = Dp(A, p)→ Dp(B, p)

• Dp(Λx.A+t1 E1...+
tn En,0) =

∧n
i=1Dp(Ei,0)

• Dp(Λx.A+t1 E1...+
tn En,1) =

∨n
i=1Dp(Ei,1)

• Dp(Πx.A+α E, p) = Dp(E, p)

Definition 6 (Expansion sequent). An expansion sequent ε is denoted by E1, ...,En ` F1, ...,Fm where Ei

and Fi are expansion trees. Its deep sequent is the sequent Dp(E1,0), ...,Dp(En,0)`Dp(F1,1), ...,Dp(Fm,1)
and its shallow sequent is Sh(E1,0), ...,Sh(En,0) ` Sh(F1,1), ...,Sh(Fm,1).

An expansion sequent may or may not represent a proof. To decide whether this is the case, we need
to reason on the dependency relation in the sequent.

Definition 7 (Domination). A term t is said to dominate a node N in an expansion tree if it labels a
parent node of N.

Definition 8 (Dependency relation). Let ε be an expansion sequent and let <0
ε be the binary relation on

the occurrences of terms in ε defined as: t <0
ε s if there is an x free in s that is an eigenvariable of a node

dominated by t. Then <ε , the transitive closure of <0
ε , is called the dependency relation of E.

Definition 9 (Expansion proof). An expansion sequent is considered an expansion proof if its deep
sequent is a tautology and the dependency relation is acyclic.

Intuitively, the dependency relation gives an ordering of quantifier inferences in a sequent calculus
proof of the shallow sequent of ε . That is, t <ε s means that the existential quantifiers instantiated with t
must occur lower in the proof than those instantiated with s. Using this relation it is possible to build an
LK proof from an expansion proof [8].

3 Importing
GAPT1 is a framework for proof transformations implemented in the programming language Scala.
It supports different proof formats, such as LK (with or without equality) for first and higher order
logic, Robinson’s resolution calculus [11], the schematic calculus LKS [4] and, more recently, expansion
trees. It provides various algorithms for proofs, such as reductive cut-elimination [5], cut-elimination by
resolution [2], cut-introduction [6], Skolemization, and translations between the proof formats. GAPT
also comes with prooftool [3], an interactive proof visualization tool supporting all these formats.

VeriT and leanCoP are automated theorem provers that produce unsatisfiability (in the shape of a
resolution refutation) and connection proofs respectively. Both output the proof objects to a structured

1https://github.com/gapt/gapt

https://github.com/gapt/gapt


4 Importing SMT and Connection proofs as expansion trees

text file, having in common the fact that all inferences are listed with the operands and the conclusion.
We have implemented parsers (using Scala’s parser combinators) for both formats in GAPT. By taking
the necessary information of each proof file and processing it accordingly, we can build expansion proofs.
We explain the kind of processing needed for each format in Sections 3.1 and 3.2.

The expansion tree of a formula with associated substitutions to its bound variables can be defined
as follows:

Definition 10. Let F be a formula in which all bound variables have pairwise distinct names, Σ a set
of substitutions for these variables and p ∈ {0,1} a polarity. Assume that each strong quantifier in F
is bound to exactly one term in Σ. We define the function ET(F,Σ, p) that translates a formula to an
expansion tree as follows:

• ET(A,Σ, p) = A, where A is an atom.

• ET(¬A,Σ, p) = ¬ET(A,Σ, p).

• ET(A◦B,Σ, p) = ET(A,Σ, p)◦ET(B,Σ, p), for ◦ ∈ {∧,∨}.
• ET(A→ B,Σ, p) = ET(A,Σ, p)→ ET(B,Σ, p).

• ET(∀x.A,Σ,0) = Λx.A+t1 ET(Aσ1,{σ1},0)...+tn ET(Aσn,{σn},0), where σi is the substitution in
Σ mapping x to ti (n is the number of times the weak quantifier was instantiated).

• ET(∀x.A,Σ,1) = Πx.A+α ET(Aσ ′,{σ ′},1) where σ ′ is the substitution in Σ mapping x to α .

• ET(∃x.A,Σ,0) = Πx.A+α ET(Aσ ′,{σ ′},0) where σ ′ is the substitution in Σ mapping x to α .

• ET(∃x.A,Σ,1) = Λx.A+t1 ET(Aσ1,{σ1},1)...+tn ET(Aσn,{σn},1), where σi is the substitution in
Σ mapping x to ti (n is the number of times the weak quentifier was instatiated).

Note that the term α used for the strong quantifiers is determined by the substitution set Σ. If the
eigenvariable condition is not satisfied in these substitutions, then the resulting expansion tree will not
be a proof of the formula.

Using the ET(F,σ , p) transformation, it is also possible to define the expansion sequent ε from a
sequent S.

Definition 11. Let S : A1, ...,An ` B1, ...,Bm be a sequent with pairwise distinct bound variables and
σ a set of substitutions for those variables such that each strongly quantified variable is bound to
exactly one term. Then we define ET(S,σ) as the expansion sequent ET(A1,σ ,0), ...,ET(An,σ ,0) `
ET(B1,σ ,1), ...,ET(Bm,σ ,1).

Definitions 10 and 11 show how to build an expansion sequent from a sequent and a set of substi-
tutions. The requirement of pairwise distinct variables can be easily satisfied by a variable renaming.
The second requirement, that each variable of a strong quantifier is bound only once, might not be true
for arbitrary proofs. Fortunately, it holds for the proofs we are dealing with, either because the input
problem contains no strong quantifiers, or because the end-sequent is skolemized. On the second case,
it is possible to deduce unique Eigenvariables for each strong quantifier and obtain the expansion tree of
the un-skolemized formula.

Lemma 1. Sh(ET(F,σ , p), p) = F

Proof. Follows from the definition of ET(F,σ , p) and Sh(E, p).

Theorem 1. A sequent S with substitutions σ , such that each strongly quantified variable in S is bound
exactly once, is valid iff the expansion sequent ET(S,σ) is an expansion proof.



Giselle Reis 5

Proof. By the soundness and completeness of expansion sequents [8], we know that an expansion se-
quent ε is an expansion proof iff its shallow sequent is valid. From Lemma 1 we have that the shallow
sequent of ET(S,σ) is S. Therefore, S is valid iff ET(S,σ) is an expansion proof.

This theorem provides a “sanity-check” for the expansion sequents extracted from proof objects. If it
is an expansion proof, we know that, at least, the end-sequent with the given substitutions is a tautology.
Note that this does not provide a check for the proof, as it is not validating each inference applied, but
only if the claimed instantiations can actually lead to a proof.

3.1 SMT proofs
SMT (Satisfiability Modulo Theory) is a decision procedure for first-order formulas with respect to a
background theory. It can be seen as a generalization of SAT problems. VeriT2 is an open-source SMT-
solver which is complete for quantifier-free formulas with uninterpreted functions and difference logic
on reals and integers. For this work we have used the proof objects produced by VeriT on the QF UF

(quantifier-free formulas with uninterpreted function symbols) problems of the SMT-LIB3. The back-
ground theory in this case was the equality theory composed by the axioms (symmetry and reflexivity
are implicit):

∀x0...∀xn.(x0 = x1∧ ...∧ xn−1 = xn→ x0 = xn)

∀x0...∀xn∀y0...∀yn.((x0 = y0∧ ...∧ xn = yn→ f (x0, ...,xn) = f (y0, ...,yn))

∀x0...∀xn∀y0...∀yn.(x0 = y0∧ ...∧ xn = yn∧ p(x0, ...,xn)→ p(y0, ...,yn))

The proofs generated are composed of CNF transformations and a resolution refutation, whose leaves
are either one of the quantifier-free formulas from the input problem or an instance of an equality axiom.
The proof object consists of a comprehensive list of labelled clauses used in the resolution proof and
their origin. They are either an input clause, without ancestors, or the result of an inference rule on other
clauses, which is specified via the labels. VeriT’s proof is purely propositional and no substitutions are
involved, since the axioms are quantifier-free and contain no free-variables.

The input problem is propositional, therefore the only substitutions needed were the ones instantiat-
ing the (weak) quantifiers of the equality axioms4. These are found by collecting the ground instances of
these axioms occurring on the leaves of the resolution proof and using a first-order matching algorithm.
By matching the instances with the appropriate axiom (without the quantifiers), we can obtain the sub-
stitutions for the quantified variables. Given those substitutions and the quantified axioms, we can build
the expansion trees. It is worth noting that the quantified equality axioms (i.e., transitivity, symmetry,
reflexivity, etc.) are build internally in GAPT, since these are not part of the proof object. Also, the
reflexivity instances needed are computed separately, since these are implicit in veriT. The expansion
tree of the (propositional) input formula can be built with an empty set of substitutions. Since these are
unsatisfiability proofs, all expansion trees will be on the left side of the expansion sequent.

3.2 Connection proofs
Connection calculi is a set of formalisms for deciding first-order classical formulas which consists on
connecting unifiable literals of opposite polarities from the input. Proof search in these calculi is charac-
terized as goal-oriented and, in general, non-confluent. LeanCoP5 is a connection based theorem prover
that implements a series of techniques for reducing the search space and making proof search feasible

2http://www.verit-solver.org/
3http://smt-lib.org/
4Observe that we do not need any information from the inference steps.
5http://leancop.de/

http://www.verit-solver.org/
http://smt-lib.org/
http://leancop.de/


6 Importing SMT and Connection proofs as expansion trees

[10]. Although its strategy is incomplete, it achieves very good performance in practice. For this work,
leanCoP 2.2 was used. It can be obtained from the CASC24 competition website6 or, alternatively,
executed online at SystemOnTPTP7.

Given an input problem (a set of axioms and conjectures in the language of first-order logic), leanCoP
will negate the axioms, skolemize the formulas and translate them into a disjunctive normal form (DNF).
It works with a positive representation of the problem and uses a special DNF transformation that is more
suitable for connection proof search [10]. The prover also adds equality axioms when necessary. Lean-
CoP is able to produce proof objects in four different formats For this work, we have used leantptp,
which is closer to the TPTP (thousands of problems for theorem provers) specification [12]. The output
file is divided in three parts: (1) input formulas; (2) clauses generated from the DNF transformation of
the input and equality axioms; and (3) proof description. Each part is described using a set of predicates
with the relevant information.

In part (1), the formulas from the input file are listed and named. Their variables are renamed
such that they are pairwise distinct. Moreover, formulas are annotated with respect to their role, e.g,
axiom or conjecture. Part (2) contains the clauses, in the form of a list of literals, that resulted from
the disjunctive normal form transformation. This can either be the regular naive DNF translation or a
definitional clausal form transformation, which assigns new predicates to some formulas. Each clause
is numbered and associated with the name of the formula that generated it. Equality axioms are labelled
with a special keyword, since they do not come from any transformation on the input formulas. The
proof per se is in part (3), where each line is an inference rule. It contains the number of the clause to
which the inference was applied, the bindings used (if any) and the resulting clause.

For building the expansion trees of the input formulas we need the substitutions used in the proof and
the Skolem terms introduced during Skolemization. The substitutions will be the terms of the expansion
tree’s weak quantifiers and the Skolem terms, translated to variables, will be the expansion tree’s strong
quantifier terms. In the leanCoP proofs, Skolem terms have a specific syntax, so they can be identified
and parsed as “Eigenvariables”. We use this approach to get an expansion proof of the original problem,
instead of the skolemized problem. Since each strong quantifier is replaced by exactly one Skolem term,
the condition for the set of substitutions in Definition 10 is satisfied.

The collection of terms used for the weak quantifiers is a bit more involved due to variable renaming.
The quantified variables in the input formula are renamed during the clausal normal form transformation.
This means that the sets of variables occurring in the original problem and in the clauses are disjoint.
The substitutions used in the proof are given with respect to the clauses’ variables, but we are interested
in building expansion trees of the input formulas. We need therefore to find a way to map the variables
in the clauses to the variables in the input formulas.

The solution found was to implement in GAPT the definitional clausal form transformation, trying
to remain as faithful as possible to the one leanCoP uses, but without the variable renaming. After
applying our transformation to the input formulas, we try to match the clauses obtained to the clauses
from the proof object. The first-order matching algorithm returns a substitution if a match is found.
Such substitution maps strongly quantified variables to “Eigenvariables” (the result of parsing Skolem
terms), and weakly quantified variables to their renamed versions used in the clauses. By composing this
substitution with the ones obtained from the bindings in the proof, we are able to correctly identify the
terms used for each quantified variable in the input formulas.

6http://pages.cs.miami.edu/~tptp/CASC/24/Systems.tgz
7http://pages.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP

http://pages.cs.miami.edu/~tptp/CASC/24/Systems.tgz
http://pages.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP


Giselle Reis 7

4 Results

We were able to import as expansion trees all the 142 proof objects provided to us by the veriT team,
and all but one under one minute. The expansion sequents generated have been used as input for the
cut-introduction algorithm [6] and some of their features (e.g. high number of instances) have motivated
improvements to the algorithm. As for leanCoP, our database consists of 3043 proofs of problems from
the TPTP library [12]. Of those, we can successfully import 1224 as expansion sequents. Some errors
still occur while parsing and matching (e.g. our generated clauses do not have the same literal ordering
as the clauses in the proof file), but we are working to increase the success rate.

Getting proofs from various theorem provers in the shape of expansion sequents allows us to do a
number of interesting things. First of all, one can visualize the end-sequent and the instances used of
each quantified formula. This is much more comfortable and easier to grasp than a raw text file. It is
also possible to check whether the instances used lead indeed to a proof of the end-sequent. This is
reduced to checking if the deep sequent of the expansion sequent is a tautology (which can be done, as
this sequent is propositional) and if the dependency relation is acyclic. In case the expansion sequent is
a proof, we can build an LK proof from it, using the dependency relation to decide the order in which
quantifiers are introduced [8]. Finally, one can attempt proof compression and discovery of lemmas using
the cut-introduction algorithm [6].

All of these functionalities are implemented in GAPT. The system comes with an interactive com-
mand line where commands for loading proofs, opening prooftool, introducing cuts, eliminating cuts,
building an LK proof from an expansion sequent, among others, can be issued. Some examples of
proofs imported and their visualizations can be found at https://www.logic.at/staff/giselle/
examples.pdf.

5 Related Work

Other projects and tools also address the issues of proof visualization and checking. For proofs in the
TPTP language in particular, there is IDV [13], which provides an interactive interface for manipulating
the DAG representing a derivation. This tool focuses solely on visualization of proofs in the TPTP
format. Our work aims on a more general framework, of which visualization is only a small part. We are
also capable to import different proof objects, not only those in the TPTP language.

As for proof checking, [7] proposes a check of leanCoP proofs in HOL Light while [1] shows how
to check SAT and SMT proofs using Coq. The former paper involved re-implementing leanCoP’s kernel
in HOL Light, which differs a lot from our approach of simply parsing the outputs of theorem provers.
In the latter, proofs produces by SAT/SMT theorem provers are certified by Coq. We must clarify that,
given the information needed to produce expansion proofs, it is not fair to claim we are checking proof
objects, but we merely have a sanity check that the instances used by the theorem prover actually lead to
a proof of the proposed theorem. Such compromise makes sense if we want a framework general enough
to deal with different proof objects, without asking any change on the side of theorem provers.

Finally, it is worth mentioning ProofCert [9], a research project with the aim of developing a theoret-
ical framework for proof representation. In order not to make such compromise, and actually check each
step of each proof for various different proof objects, a solid foundation of proof specification needs to
be developed. While this does not happen, this work shows how it is still possible to combine existing
proof objects into one representation.

https://www.logic.at/staff/giselle/examples.pdf
https://www.logic.at/staff/giselle/examples.pdf


8 Importing SMT and Connection proofs as expansion trees

6 Conclusion
We have shown how SMT and Connection proofs can be both imported as expansion sequents. The
information needed from the proof objects is just the end-sequent being proven and a set of instances
used for the quantified formulas. For both cases presented we relied on a first-order matching algorithm,
but this requirement can be lifted if all substitutions are provided directly in the proof object.

The representation using expansion sequents serves various purposes. It provides an easy proof
visualization, a simple checking procedure, LK proof construction and introduction of cuts.

This is an ongoing work, and we hope to have many developments in the near future. In particular,
the difficulties in importing leanCoP proofs remain to be resolved. This procedure also offers a lot of
room for optimization. Once we have a big enough set of parsed leanCoP proofs, we will add those to the
benchmark used in the cut-introduction algorithm. As for veriT proofs, we plan to test bigger examples,
as the ones provided are only a small subset from the SMT-LIB.

Another future goal is importing other formats from other provers and comparing the different proofs
for the same input problem. We also aim on integrating a check for whether the obtained expansion
sequent is an expansion proof in the import function.

References
[1] Michael Armand, Germain Faure, Benjamin Grgoire, Chantal Keller, Laurent Thry & Benjamin Werner

(2011): A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In: CPP, Lecture Notes
in Computer Science, Springer Berlin Heidelberg, pp. 135–150, doi:10.1007/978-3-642-25379-9 12.

[2] Matthias Baaz & Alexander Leitsch (2000): Cut-elimination and Redundancy-elimination by Resolution.
Journal of Symbolic Computation 29(2), pp. 149–176, doi:10.1006/jsco.1999.0359.

[3] Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Martin Riener, Mikheil Rukhaia, Daniel Weller &
Bruno Woltzenlogel Paleo (2013): PROOFTOOL: a GUI for the GAPT Framework. In: 10th UITP, EPTCS
118, pp. 1–14, doi:10.4204/EPTCS.118.1.

[4] Cvetan Dunchev, Alexander Leitsch, Mikheil Rukhaia & Daniel Weller (2013): CERES for First-Order
Schemata. CoRR abs/1303.4257, doi:10.1007/978-3-662-46906-4 8.

[5] Gerhard Gentzen (1935): Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39(1),
pp. 176–210, doi:10.1007/BF01201353.

[6] Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai & Daniel Weller (2014): Introducing Quan-
tified Cuts in Logic with Equality. In: 7th IJCAR, Lecture Notes in Computer Science 8562, Springer, pp.
240–254, doi:10.1007/978-3-319-08587-6 17.

[7] Cezary Kaliszyk, Josef Urban & Jiři Vyskočil (2015): Certified Connection Tableaux Proofs for HOL Light
and TPTP. CPP ’15, ACM, New York, NY, USA, pp. 59–66, doi:10.1145/2676724.2693176.

[8] Dale Miller (1987): A compact representation of proofs. Studia Logica 46(4), pp. 347–370,
doi:10.1007/BF00370646.

[9] Dale Miller (2011): ProofCert: Broad Spectrum Proof Certificates. ERC Advanced Grant 2012-2016.
[10] Jens Otten (2010): Restricting backtracking in connection calculi. AI Commun. 23(2-3), pp. 159–182,

doi:10.3233/AIC-2010-0464.
[11] J. A. Robinson (1965): A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1), pp.

23–41, doi:10.1145/321250.321253.
[12] G. Sutcliffe (2009): The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts,

v3.5.0. Journal of Automated Reasoning 43(4), pp. 337–362, doi:10.1007/s10817-009-9143-8.
[13] Steven Trac, Yury Puzis & Geoff Sutcliffe (2007): An Interactive Derivation Viewer. Electronic Notes in

Theoretical Computer Science 174(2), pp. 109 – 123, doi:10.1016/j.entcs.2006.09.025. Proceedings of the
7th Workshop on User Interfaces for Theorem Provers (UITP 2006).

http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1006/jsco.1999.0359
http://dx.doi.org/10.4204/EPTCS.118.1
http://dx.doi.org/10.1007/978-3-662-46906-4_8
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1007/978-3-319-08587-6_17
http://dx.doi.org/10.1145/2676724.2693176
http://dx.doi.org/10.1007/BF00370646
http://dx.doi.org/10.3233/AIC-2010-0464
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/s10817-009-9143-8
http://dx.doi.org/10.1016/j.entcs.2006.09.025


Submitted to:
PxTP 2015

c© Giselle Reis
This work is licensed under the
Creative Commons Attribution License.

Importing SMT and Connection proofs as expansion trees:
examples

Giselle Reis
INRIA-Saclay, France

giselle.reis@inria.fr

This report contains some examples of proofs from the automated theorem provers leanCoP and
veriT and shows how they can be imported in GAPT. All files are available in the examples directory
of the software.

The versions of the softwares used were:
• GAPT: master branch as of 30/07/20151

• LeanCoP 2.2
• VeriT 201410
We show here how these proofs are visualized in prooftool, but by typing help in GAPT’s

command line, one can see a list of available functions for other purposes.

1 LeanCoP

The following file represents the problem of determining whether there exists two irrational numbers x
and y such that x to the power of y is rational.

fof(a, axiom, i(sr2)).

fof(b, axiom, ~i(two)).

fof(c, axiom, times(sr2,sr2) = two).

fof(d, axiom, ![X,Y,Z] : exp(exp(X, Y), Z) = exp(X, times(Y,Z))).

fof(e, axiom, ![X] : exp(X, two) = times(X,X)).

fof(f, conjecture, ?[X,Y] : (~i(exp(X,Y)) & i(X) & i(Y))).

LeanCoP’s leantptp proof (with extra line breaks to fit the width) of this problem is:

fof(f, conjecture, ? [_13459, _13462] : (~ i(exp(_13459, _13462)) & i(_13459) & i(_13462)),

file(’samples/irrationals.p’, f)).

fof(a, axiom, i(sr2), file(’samples/irrationals.p’, a)).

fof(b, axiom, ~ i(two), file(’samples/irrationals.p’, b)).

fof(c, axiom, times(sr2, sr2) = two, file(’samples/irrationals.p’, c)).

fof(d, axiom, ! [_13784, _13787, _13790] :

exp(exp(_13784, _13787), _13790) = exp(_13784, times(_13787, _13790)),

file(’samples/irrationals.p’, d)).

fof(e, axiom, ! [_13973] : exp(_13973, two) = times(_13973, _13973),

file(’samples/irrationals.p’, e)).

cnf(1, plain, [-(i(exp(_7304, _7358))), i(_7304), i(_7358)], clausify(f)).

cnf(2, plain, [-(i(sr2))], clausify(a)).

cnf(3, plain, [i(two)], clausify(b)).

1If you are using the system after this date, all functionality described here should work. If this is not the case, please file a
bug report.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Importing SMT and Connection proofs as expansion trees: examples

cnf(4, plain, [-(times(sr2, sr2) = two)], clausify(c)).

cnf(5, plain, [-(exp(exp(_6527, _6583), _6638) = exp(_6527, times(_6583, _6638)))], clausify(d)).

cnf(6, plain, [-(exp(_6984, two) = times(_6984, _6984))], clausify(e)).

cnf(7, plain, [-(exp(_4828, _4961) = exp(_4895, _5026)), _4828 = _4895, _4961 = _5026],

theory(equality)).

cnf(8, plain, [-(i(_4533)), _4484 = _4533, i(_4484)], theory(equality)).

cnf(9, plain, [-(_3586 = _3586)], theory(equality)).

cnf(’1’,plain,[i(two)],start(3)).

cnf(’1.1’,plain,[-(i(two)), times(sr2, sr2) = two, i(times(sr2, sr2))],

extension(8,bind([[_4533, _4484], [two, times(sr2, sr2)]]))).

cnf(’1.1.1’,plain,[-(times(sr2, sr2) = two)],extension(4)).

cnf(’1.1.2’,plain,[-(i(times(sr2, sr2))), exp(sr2, two) = times(sr2, sr2), i(exp(sr2, two))],

extension(8,bind([[_4533, _4484], [times(sr2, sr2), exp(sr2, two)]]))).

cnf(’1.1.2.1’,plain,[-(exp(sr2, two) = times(sr2, sr2))],extension(6,bind([[_6984], [sr2]]))).

cnf(’1.1.2.2’,plain,[-(i(exp(sr2, two))),

exp(sr2, times(sr2, sr2)) = exp(sr2, two), i(exp(sr2, times(sr2, sr2)))],

extension(8,bind([[_4533, _4484], [exp(sr2, two), exp(sr2, times(sr2, sr2))]]))).

cnf(’1.1.2.2.1’,plain,[-(exp(sr2, times(sr2, sr2)) = exp(sr2, two)),

sr2 = sr2, times(sr2, sr2) = two],

extension(7,bind([[_4828, _4895, _4961, _5026], [sr2, sr2, times(sr2, sr2), two]]))).

cnf(’1.1.2.2.1.1’,plain,[-(sr2 = sr2)],extension(9,bind([[_3586], [sr2]]))).

cnf(’1.1.2.2.1.2’,plain,[-(times(sr2, sr2) = two)],extension(4)).

cnf(’1.1.2.2.2’,plain,[-(i(exp(sr2, times(sr2, sr2)))),

exp(exp(sr2, sr2), sr2) = exp(sr2, times(sr2, sr2)), i(exp(exp(sr2, sr2), sr2))],

extension(8,bind([[_4533, _4484], [exp(sr2, times(sr2, sr2)), exp(exp(sr2, sr2), sr2)]]))).

cnf(’1.1.2.2.2.1’,plain,[-(exp(exp(sr2, sr2), sr2) = exp(sr2, times(sr2, sr2)))],

extension(5,bind([[_6527, _6583, _6638], [sr2, sr2, sr2]]))).

cnf(’1.1.2.2.2.2’,plain,[-(i(exp(exp(sr2, sr2), sr2))), i(exp(sr2, sr2)), i(sr2)],

extension(1,bind([[_7304, _7358], [exp(sr2, sr2), sr2]]))).

cnf(’1.1.2.2.2.2.1’,plain,[-(i(exp(sr2, sr2))), i(sr2), i(sr2)],

extension(1,bind([[_7304, _7358], [sr2, sr2]]))).

cnf(’1.1.2.2.2.2.1.1’,plain,[-(i(sr2))],extension(2)).

cnf(’1.1.2.2.2.2.1.2’,plain,[-(i(sr2))],extension(2)).

cnf(’1.1.2.2.2.2.2’,plain,[-(i(sr2))],extension(2)).

One can load it in GAPT using the command:

gapt> val es = loadLeanCoPProof("examples/import/irrationals.leancop.s")

es: Option[at.logic.gapt.proofs.expansionTrees.ExpansionSequent] = ...

Running prooftool on this object (prooftool(es.get)) will open a window with the visualization
of the expansion proof, as shown in Figure 1. Note that the succedent is already expanded (clicking on a
quantified formula will expand it to the instances used) and we can see the two pairs used: (

√
2,
√

2) and

(
√

2
√

2
,
√

2).

2 VeriT

The following is a simple proof which needs the equality axiom of congruence on predicates:

(set-logic QF_UF)

(set-info :smt-lib-version 2.0)

(declare-sort U 0)

(declare-fun f (U U) U)



Giselle Reis 3

Figure 1: Visualization of the expansion tree for the proof of irrational numbers.

(declare-fun a () U)

(declare-fun b () U)

(declare-fun p (U) Bool)

(assert (p a))

(assert (and (= (f a b) (f (f a b) b))

(= (p (f (f a b) b)) (p a))))

(assert (not (p (f a b))))

(check-sat)

(exit)

Running veriT on this problem with the option --proof-version=1 generates the proof object
(with extra line breaks):
veriT 201410 - the SMT-solver veriT (UFRN/LORIA).

success

success

success

success

success

success

success

success

unsat

success

(set .c1 (input :conclusion ((p a))))

(set .c2 (input :conclusion ((and (= (f a b) (f (f a b) b)) (= (p (f (f a b) b)) (p a))))))

(set .c3 (input :conclusion ((not (p (f a b))))))

(set .c4 (and :clauses (.c2) :conclusion ((= (f a b) (f (f a b) b)))))

(set .c5 (and :clauses (.c2) :conclusion ((= (p (f (f a b) b)) (p a)))))

(set .c6 (equiv1 :clauses (.c5) :conclusion ((not (p (f (f a b) b))) (p a))))

(set .c7 (equiv2 :clauses (.c5) :conclusion ((p (f (f a b) b)) (not (p a)))))

(set .c8 (resolution :clauses (.c7 .c1) :conclusion ((p (f (f a b) b)))))

(set .c9 (eq_congruent_pred :conclusion ((not (= (f a b) (f (f a b) b)))

(not (p (f (f a b) b))) (p (f a b)))))

(set .c10 (resolution :clauses (.c9 .c4 .c8 .c3) :conclusion ()))

Analogous to the leanCoP case, we can load the proof in GAPT and open the corresponding expan-
sion proof in prooftool:

val p = loadVeriTProof("examples/import/predcong.verit.s")

p: Option[at.logic.gapt.proofs.expansionTrees.ExpansionSequent] = ...

gapt> prooftool(p.get)



4 Importing SMT and Connection proofs as expansion trees: examples

Figure 2: Visualization of the expansion tree for a simple veriT proof.

The result is in Figure 2. In this case, the instance of the predicate congruence axiom used in ex-
panded.

Acknowledgments The author would like to thank Pascal Fontaine and Jens Otten for clarifications
about the tools used and fruitful discussions; Pascal Fontaine and Geoff Sutcliffe for providing the dataset
of proofs; Sonia Marin for comments on an early draft; and the reviewers for very useful remarks and
for taking the time to try the system.


